POJ1584 A Round Peg in a Ground Hole 凸包判断 圆和凸包的关系
Posted 逐雪
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ1584 A Round Peg in a Ground Hole 凸包判断 圆和凸包的关系相关的知识,希望对你有一定的参考价值。
题意:给定n条边首尾相连对应的n个点 判断构成的图形是不是凸多边形
然后给一个圆 判断圆是否完全在凸包内(相切也算)
思路:首先运用叉积判断凸多边形 相邻三条变叉积符号相异则必有凹陷 O(n)
之后首先判断圆心是否在凸多边形内 如果凸多边形的点有序 则可以在logn时间内判断 否则先排序再判断 O(nlogn)
然后用每条边(线段)判断到圆心的距离即可
这道题也没给数据范围 O(nlogn)是可以AC的。
#include<iostream> #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<algorithm> #include<queue> #include<vector> using namespace std; const double eps=1e-9; int cmp(double x) { if(fabs(x)<eps)return 0; if(x>0)return 1; else return -1; } const double pi=acos(-1.0); inline double sqr(double x) { return x*x; } struct point { double x,y; point (){} point (double a,double b):x(a),y(b){} void input() { scanf("%lf%lf",&x,&y); } friend point operator +(const point &a,const point &b) { return point(a.x+b.x,a.y+b.y); } friend point operator -(const point &a,const point &b) { return point(a.x-b.x,a.y-b.y); } friend bool operator ==(const point &a,const point &b) { return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0; } friend point operator *(const point &a,const double &b) { return point(a.x*b,a.y*b); } friend point operator*(const double &a,const point &b) { return point(a*b.x,a*b.y); } friend point operator /(const point &a,const double &b) { return point(a.x/b,a.y/b); } double norm() { return sqrt(sqr(x)+sqr(y)); } }; struct line { point a,b; line(){}; line(point x,point y):a(x),b(y) { } }; double det(const point &a,const point &b) { return a.x*b.y-a.y*b.x; } double dot(const point &a,const point &b) { return a.x*b.x+a.y*b.y; } double dist(const point &a,const point &b) { return (a-b).norm(); } point rotate_point(const point &p,double A) { double tx=p.x,ty=p.y; return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A)); } bool parallel(line a,line b) { return !cmp(det(a.a-a.b,b.a-b.b)); } bool line_joined(line a,line b,point &res) { if(parallel(a,b))return false; double s1=det(a.a-b.a,b.b-b.a); double s2=det(a.b-b.a,b.b-b.a); res=(s1*a.b-s2*a.a)/(s1-s2); return true; } bool pointonSegment(point p,point s,point t) { return cmp(det(p-s,t-s))==0&&cmp(dot(p-s,p-t))<=0; } void PointProjLine(const point p,const point s,const point t,point &cp) { double r=dot((t-s),(p-s))/dot(t-s,t-s); cp=s+r*(t-s); } struct polygon_convex { vector<point>P; polygon_convex(int Size=0) { P.resize(Size); } }; bool comp_less(const point &a,const point &b) { return cmp(a.x-b.x)<0||cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0; } polygon_convex convex_hull(vector<point> a) { polygon_convex res(2*a.size()+5); sort(a.begin(),a.end(),comp_less); a.erase(unique(a.begin(),a.end()),a.end());//删去重复点 int m=0; for(int i=0;i<a.size();i++) { while(m>1&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m; res.P[m++]=a[i]; } int k=m; for(int i=int(a.size())-2;i>=0;--i) { while(m>k&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m; res.P[m++]=a[i]; } res.P.resize(m); if(a.size()>1)res.P.resize(m-1); return res; } bool is_convex(vector<point> &a) { for(int i=0;i<a.size();i++) { int i1=(i+1)%int(a.size()); int i2=(i+2)%int(a.size()); int i3=(i+3)%int(a.size()); if((cmp(det(a[i1]-a[i],a[i2]-a[i1]))*cmp(det(a[i2]-a[i1],a[i3]-a[i2])))<0) return false; } return true; } int containO(const polygon_convex &a,const point &b) { int n=a.P.size(); point g=(a.P[0]+a.P[n/3]+a.P[2*n/3])/3.0; int l=0,r=n; while(l+1<r) { int mid=(l+r)/2; if(cmp(det(a.P[l]-g,a.P[mid]-g))>0) { if(cmp(det(a.P[l]-g,b-g))>=0&&cmp(det(a.P[mid]-g,b-g))<0)r=mid; else l=mid; }else { if(cmp(det(a.P[l]-g,b-g))<0&&cmp(det(a.P[mid]-g,b-g))>=0)l=mid; else r=mid; } } r%=n; int z=cmp(det(a.P[r]-b,a.P[l]-b))-1; if(z==-2)return 1; return z; } bool circle_in_polygon(point cp,double r,polygon_convex &pol) { polygon_convex pp=convex_hull(pol.P); if(containO(pp,cp)!=1)return false; for(int i=0;i<pol.P.size();i++) { int j; if(i<pol.P.size()-1)j=i+1; else j=0; point prol; PointProjLine(cp,pol.P[i],pol.P[j],prol); double dis; if(pointonSegment(prol,pol.P[i],pol.P[j]))dis=dist(prol,cp); else dis=min(dist(cp,pol.P[i]),dist(pol.P[j],cp)); if(cmp(dis-r)==-1)return false; } return true; } vector<point>pn; int main() {freopen("t.txt","r",stdin); //freopen("1.txt","w",stdout); int n; while(scanf("%d",&n)&&n>=3) {pn.resize(n); double ra;scanf("%lf",&ra); point cc;cc.input(); for(int i=0;i<n;i++) pn[i].input(); polygon_convex pc; if(!is_convex(pn)){printf("HOLE IS ILL-FORMED\n");continue;} pc.P=pn; if(circle_in_polygon(cc,ra,pc)){printf("PEG WILL FIT\n");continue;} else {printf("PEG WILL NOT FIT\n");continue;} } return 0; }
以上是关于POJ1584 A Round Peg in a Ground Hole 凸包判断 圆和凸包的关系的主要内容,如果未能解决你的问题,请参考以下文章
poj1584 A round peg in a ground hole计算几何
POJ1584 A Round Peg in a Ground Hole 凸包判断 圆和凸包的关系
POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内
POJ 1584 A Round Peg in a Ground Hole(凸多边形判断 + 点是否在多边形内 + 点到线段的最短距离)