斐波那契数列——摘自搜狗百科

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了斐波那契数列——摘自搜狗百科相关的知识,希望对你有一定的参考价值。

 

1数列公式


 

递推公式

斐波那契数列:0、1、1、2、3、5、8、13、21、34、55、89、144...

如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:

F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

通项公式

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:

X^2=X+1

解得

X1=(1+√5)/2, X2=(1-√5)/2.

技术分享斐波拉契数列则F(n)=C1*X1^n + C2*X2^n

∵F(1)=F(2)=1

∴C1*X1 + C2*X2

C1*X1^2 + C2*X2^2

解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】

通项公式的推导方法二:普通方法

设常数r,s

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

则r+s=1, -rs=1

n≥3时,有

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]

F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]

F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:

F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]

∵s=1-r,F(1)=F(2)=1

上式可化简得:

F(n)=s^(n-1)+r*F(n-1)

那么:

F(n)=s^(n-1)+r*F(n-1)

= s^(n-1) + r*s^(n-2) + r^2*F(n-2)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2

则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

2黄金分割


关系

技术分享斐波拉契数列股市运用这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618(或者说后一项与前一项的比值小数部分越来越逼近黄金分割0.618、前一项与后一项的比值越来越逼近黄金分割0.618)

1÷1=1,1÷2=0.5,2÷3=0.666...,3÷5=0.6,5÷8=0.625,…………,55÷89=0.617977…,…………144÷233=0.618025…46368÷75025=0.6180339886…...

越到后面,这些比值越接近黄金比

证明

a[n+2]=a[n+1]+a[n]。

两边同时除以a[n+1]得到:

a[n+2]/a[n+1]=1+a[n]/a[n+1]。

若a[n+1]/a[n]的极限存在,设其极限为x,

则lim[n->;;∞](a[n+2]/a[n+1])=lim[n->;;∞](a[n+1]/a[n])=x。

所以x=1+1/x。

所以极限是黄金分割比。

3特性介绍


方与前后项

从第二项开始,每个奇数项的平方都比前后两项之积少1,每个偶数项的平方都比前后两项之积多1。

如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通)

证明经计算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)

与集合子集

斐波那契数列的第n+2项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

奇数项求和

技术分享

偶数项求和

技术分享

平方求和

技术分享

隔项关系

f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]

两倍项关系

f(2n)/f(n)=f(n-1)+f(n+1)

其他公式

技术分享

技术分享

4应用方式

 

杨辉三角

杨辉三角左对齐,成如图所示排列,将同一斜行的数加起来,即得一数列1、1、2、3、5、8、……

公式表示如下:

f⑴=C(0,0)=1。

f⑵=C(1,0)=1。

f⑶=C(2,0)+C(1,1)=1+1=2。

f⑷=C(3,0)+C(2,1)=1+2=3。

f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。

f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。

F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。

……

F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)

质数数量

斐波那契数列的整除性与素数生成性

每3个连续的数中有且只有一个被2整除,

每4个连续的数中有且只有一个被3整除,

每5个连续的数中有且只有一个被5整除,

每6个连续的数中有且只有一个被8整除,

每7个连续的数中有且只有一个被13整除,

每8个连续的数中有且只有一个被21整除,

每9个连续的数中有且只有一个被34整除,

.......

我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657(第19位不是)

斐波那契数列的素数无限多吗?

尾数循环

斐波那契数列的个位数:一个60步的循环

11235,83145,94370,77415,61785.38190,

99875,27965,16730,33695,49325,72910…

进一步,斐波那契数列的最后两位数是一个300步的循环,最后三位数是一个1500步的循环,最后四位数是一个15000步的循环,最后五位数是一个150000步的循环。

数字谜题

三角形的三边关系定理斐波那契数列的一个联系:

现有长为144cm的铁丝,要截成n小段(n>2),每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少?

分析:由于形成三角形的充要条件是任何两边之和大于第三边,因此不构成三角形的条件就是存在两边之和不超过另一边。截成的铁丝最小为1,因此可以放2个1,第三条线段就是2(为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和),依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10。

我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最小数1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了。这里,三角形的三边关系定理和斐波那契数列发生了一个联系。

在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了。

影视作品中的斐波那契数列

斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。

5阵列推广

斐波那契卢卡斯数列

卢卡斯数列1、3、4、7、11、18…,也具有斐波那契数列同样的性质。(我们可称之为斐波那契—卢卡斯递推:从第三项开始,每一项都等于前两项之和f(n) = f(n-1)+ f(n-2)。

卢卡斯数列的通项公式为 f(n)=[(1+√5)/2]^n+[(1-√5)/2]^n

这两个数列还有一种特殊的联系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)

n

1

2

3

4

5

6

7

8

9

10

斐波那契数列F(n)

1

1

2

3

5

8

13

21

34

55

卢卡斯数列L(n)

1

3

4

7

11

18

29

47

76

123

F(n)*L(n)

1

3

8

21

55

144

377

987

2584

6765

类似的数列还有无限多个,我们称之为斐波那契—卢卡斯数列。

如1,4,5,9,14,23…,因为1,4开头,可记作F[1,4],斐波那契数列就是F[1,1],卢卡斯数列就是F[1,3],斐波那契—卢卡斯数列就是F[a,b]。

斐波那契—卢卡斯数列之间的广泛联系

①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。

如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),

n

1

2

3

4

5

6

7

8

9

10

F[1,4]n

1

4

5

9

14

23

37

60

97

157

F[1,3]n

1

3

4

7

11

18

29

47

76

123

F[1,4]n-F[1,3]n

0

1

1

2

3

5

8

13

21

34

F[1,4]n+F[1,3]n

2

7

9

16

25

41

66

107

173

280

②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得,如

n

1

2

3

4

5

6

7

8

9

10

F[1,1](n)

1

1

2

3

5

8

13

21

34

55

F[1,1](n-1)

0

1

1

2

3

5

8

13

21

34

F[1,1](n-1)

0

1

1

2

3

5

8

13

21

34

F[1,3]n

1

3

4

7

11

18

29

47

76

123

黄金特征与孪生斐波那契—卢卡斯数列

斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的绝对值是一个恒值,

斐波那契数列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1

卢卡斯数列:|3*3-1*4|=|4*4-3*7|=…=5

F[1,4]数列:|4*4-1*5|=11

F[2,5]数列:|5*5-2*7|=11

F[2,7]数列:|7*7-2*9|=31

斐波那契数列这个值是1最小,也就是前后项之比接近黄金比例最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列。卢卡斯数列的黄金特征是5,也是独生数列。前两项互质的独生数列只有斐波那契数列和卢卡斯数列这两个数列。

而F[1,4]与F[2,5]的黄金特征都是11,是孪生数列。F[2,7]也有孪生数列:F[3,8]。其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列。

广义斐波那契数列

斐波那契数列的黄金特征1,还让我们联想到佩尔数列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(该类数列的这种特征值称为勾股特征)。

佩尔数列Pn的递推规则:P1=1,P2=2,Pn=P(n-2)+2P(n-1).

据此类推到所有根据前两项导出第三项的通用规则:f(n) = f(n-1) * p + f(n-2) * q,称为广义斐波那契数列。

当p=1,q=1时,我们得到斐波那契—卢卡斯数列。

当p=1,q=2时,我们得到佩尔—勾股弦数(跟边长为整数的直角三角形有关的数列集合)。

当p=2,q=-1时,我们得到等差数列。其中f1=1,f2=2时,我们得到自然数列1,2,3,4…。自然数列的特征就是每个数的平方与前后两数之积的差为1(等差数列的这种差值称为自然特征)。

具有类似黄金特征、勾股特征、自然特征的广义——斐波那契数列p=±1。

当f1=1,f2=2,p=2,q=0时,我们得到等比数列1,2,4,8,16……

6方法延伸

排列组合

有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?

这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……

1,2,3,5,8,13……所以,登上十级,有89种走法。

类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?

答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144种。

递推数列a⑴=1,a(n+1)=1+1/a(n)的通项公式

数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。

兔子繁殖问题

斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?

我们不妨拿新出生的一对小兔子分析一下:

第一个月小兔子没有繁殖能力,所以还是一对

两个月后,生下一对小兔对数共有两对

三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对

------

依次类推可以列出下表:

经过月数

0

1

2

3

4

5

6

7

8

9

10

11

12

幼仔对数

1

0

1

1

2

3

5

8

13

21

34

55

89

成兔对数

0

1

1

2

3

5

8

13

21

34

55

89

144

总体对数

1

1

2

3

5

8

13

21

34

55

89

144

233

幼仔对数=前月成兔对数

成兔对数=前月成兔对数+前月幼仔对数

总体对数=本月成兔对数+本月幼仔对数

可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。

这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)

数列与矩阵

对于斐波那契数列1、1、2、3、5、8、13、……。有如下定义

F(n)=F(n-1)+F(n-2)

F(1)=1

F(2)=1

对于以下矩阵乘法

F(n+1) = 11 F(n)

F(n) 10 F(n-1)

它的运算就是右边的矩阵 11乘以矩阵 F(n) 得到:

10 F(n-1)

F(n+1)=F(n)+F(n-1)

F(n)=F(n)

可见该矩阵的乘法完全符合斐波那契数列的定义

设矩阵A=1 1 迭代n次可以得到:F(n+1) =A^(n) * F(1)= A^(n)*1

1 0 F(n) F(0) 0

这就是斐波那契数列的矩阵乘法定义。

另矩阵乘法的一个运算法则A^n(n为偶数) = A^(n/2)* A^(n/2),这样我们通过二分的思想,可以实现对数复杂度的矩阵相乘

因此可以用递归的方法求得答案。

数列值的另一种求法:

F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]

其中[ x ]表示取距离 x 最近的整数。

斐波那契弧线

斐波那契弧线,也称为斐波那契扇形线。第一,此趋势线以二个端点为准而画出,例如,最低点反向到最高点线上的两个点。然后通过第二点画出一条“无形的(看不见的)”垂直线。然后,从第一个点画出第三条趋势线:38.2%, 50%和61.8%的无形垂直线交叉。

斐波纳契弧线,是潜在的支持点和阻力点水平价格。斐波纳契弧线和斐波纳契扇形线常常在图表里同时绘画出。支持点和阻力点就是由这些线的交汇点得出。

要注意的是弧线的交叉点和价格曲线会根据图表数值范围而改变,因为弧线是圆周的一部分,它的形成总是一样的。

 
 
 

以上是关于斐波那契数列——摘自搜狗百科的主要内容,如果未能解决你的问题,请参考以下文章

斐波那契数与二分法的递归与非递归算法及其复杂度分析

什么是斐波那契数列?在日常生活中有什么实例?

2021/6/10 刷题笔记斐波那契数列+泰波那契数

13.斐波那契数

算法动态规划 - 斐波那契数

2834 斐波那契数