魏昊卿——《Linux内核分析》第二周作业:了解操作系统是怎样工作的

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了魏昊卿——《Linux内核分析》第二周作业:了解操作系统是怎样工作的相关的知识,希望对你有一定的参考价值。

魏昊卿——《Linux内核分析》第二周作业:了解操作系统是怎样工作的

一、实验部分

使用实验楼的虚拟机打开shell

cd LinuxKernel/linux-3.9.4
qemu -kernel arch/x86/boot/bzImage

 技术分享

然后cd mykernel 您可以看到qemu窗口输出的内容的代码mymain.c和myinterrupt.c

使用自己的Linux系统环境搭建过程参见mykernel,其中也可以找到一个简单的时间片轮转多道程序内核代码

mymain.c

技术分享

myinterrupt.c

技术分享

 

 

二、分析进程的启动和进程的切换机

 

  • 往往系统都有很多进程比较复杂,我们假定当前系统只有两个进程0和1,第一次调度是从0切换到1,也就是prev=0,next=1,第二次调度正好相反。

  • 这时再看myinterrupt.c的汇编代码,保存prev的进程(0)上下文,下次调度是next进程就是0了,反之进程1是next那它肯定之前作为prev被调度出去过。理解进程上下文的保存和恢复极为关键。

  • $1f就是指标号1:的代码在内存中存储的地址

  • 再来看特殊一点代码切换到一个新的进程,也就是next没有被保存过进程上下文,它从没有被执行过,这时稍特殊一点即else部分的汇编代码

 

源代码:

mypcb.h

 1 /*
 2  *  linux/mykernel/mypcb.h
 3  *
 4  *  Kernel internal PCB types
 5  *
 6  *  Copyright (C) 2013  Mengning
 7  *
 8  */
 9 
10 #define MAX_TASK_NUM        4
11 #define KERNEL_STACK_SIZE   1024*8
12 
13 /* CPU-specific state of this task */
14 struct Thread {
15     unsigned long        ip;
16     unsigned long        sp;
17 };
18 
19 typedef struct PCB{
20     int pid;
21     volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
22     char stack[KERNEL_STACK_SIZE];
23     /* CPU-specific state of this task */
24     struct Thread thread;
25     unsigned long    task_entry;
26     struct PCB *next;
27 }tPCB;
28 
29 void my_schedule(void);

详细解析:

1.

struct Thread {
     unsigned long        ip;
     unsigned long        sp;
 };

用来存储ip和sp

2.

typedef struct PCB{
    int pid;              进程id
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */   进程状态
    char stack[KERNEL_STACK_SIZE];       进程堆栈
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long    task_entry;      进程入口
    struct PCB *next;                  进程链表
}tPCB;

定义进程管理相关的数据结构,具体内容如上

3.

void my_schedule(void);

调度器

 

mymain.c

 1 /*
 2  *  linux/mykernel/mymain.c
 3  *
 4  *  Kernel internal my_start_kernel
 5  *
 6  *  Copyright (C) 2013  Mengning
 7  *
 8  */
 9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/tty.h>
13 #include <linux/vmalloc.h>
14 
15 
16 #include "mypcb.h"
17 
18 tPCB task[MAX_TASK_NUM];
19 tPCB * my_current_task = NULL;
20 volatile int my_need_sched = 0; 是否需要调度
21 
22 void my_process(void);
23 
24 
25 void __init my_start_kernel(void)
26 {
27     int pid = 0;
28     int i;
29     /* Initialize process 0*/初始化0号进程
30     task[pid].pid = pid;  进程id
31     task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */进程状态
32     task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;  进程入口
33     task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];  栈顶
34     task[pid].next = &task[pid];
35     /*fork more process */       生成其他进程
36     for(i=1;i<MAX_TASK_NUM;i++)  新进程的相关信息
37     {
38         memcpy(&task[i],&task[0],sizeof(tPCB));
39         task[i].pid = i;
40         task[i].state = -1;
41         task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
42         task[i].next = task[i-1].next;
43         task[i-1].next = &task[i];
44     }
45     /* start process 0 by task[0] */ 启动0号进程
46     pid = 0;
47     my_current_task = &task[pid];
48     asm volatile(
49         "movl %1,%%esp\n\t"     /* set task[pid].thread.sp to esp */
50         "pushl %1\n\t"             /* push ebp */
51         "pushl %0\n\t"             /* push task[pid].thread.ip */
52         "ret\n\t"                 /* pop task[pid].thread.ip to eip */
53         "popl %%ebp\n\t"
54         : 
55         : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
56     );
57 }   
58 void my_process(void)
59 {
60     int i = 0;
61     while(1)
62     {
63         i++;
64         if(i%10000000 == 0)
65         {
66             printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
67             if(my_need_sched == 1)
68             {
69                 my_need_sched = 0;
70                 my_schedule();
71             }
72             printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
73         }     
74     }
75 }

详细解析:

1.分析void __init my_start_kernel(void)

 /* Initialize process 0*/初始化0号进程
     task[pid].pid = pid;  进程id
     task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */进程状态
     task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;  进程入口
     task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];  栈顶
     task[pid].next = &task[pid]; 指向下一个进程的指针
 /*fork more process */       生成其他进程
     for(i=1;i<MAX_TASK_NUM;i++)  新进程的相关信息,复制0号进程
     {
         memcpy(&task[i],&task[0],sizeof(tPCB));
         task[i].pid = i;
         task[i].state = -1;
         task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
         task[i].next = task[i-1].next;
         task[i-1].next = &task[i];
     }
 /* start process 0 by task[0] */ 启动0号进程,采用嵌入式汇编,构建了CPU的运行环境
     pid = 0;
     my_current_task = &task[pid];
     asm volatile(
         "movl %1,%%esp\n\t"     /* set task[pid].thread.sp to esp */    将sp的值放到esp中
        "pushl %1\n\t"             /* push ebp */    ebp等于esp,将ebp压栈
         "pushl %0\n\t"             /* push task[pid].thread.ip */   eip压栈
         "ret\n\t"                 /* pop task[pid].thread.ip to eip */   返回process函数的头部
         "popl %%ebp\n\t"                                                   ebp出栈
         : 
         : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
     );
2.void my_process(void) 所有进程的代码相同,主动调度机制
void my_process(void)
{
int i = 0; while(1) { i++; if(i%10000000 == 0)执行1000万次后输出 { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); ,打印 if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }

 

myinterrupt.c

 1 /*
 2  *  linux/mykernel/myinterrupt.c
 3  *
 4  *  Kernel internal my_timer_handler
 5  *
 6  *  Copyright (C) 2013  Mengning
 7  *
 8  */
 9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/tty.h>
13 #include <linux/vmalloc.h>
14 
15 #include "mypcb.h"
16 
17 extern tPCB task[MAX_TASK_NUM];
18 extern tPCB * my_current_task;
19 extern volatile int my_need_sched;
20 volatile int time_count = 0;
21 
22 /*
23  * Called by timer interrupt.
24  * it runs in the name of current running process,
25  * so it use kernel stack of current running process
26  */
27 void my_timer_handler(void)
28 {
29 #if 1
30     if(time_count%1000 == 0 && my_need_sched != 1)
31     {
32         printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
33         my_need_sched = 1;
34     } 
35     time_count ++ ;  
36 #endif
37     return;      
38 }
39 
40 void my_schedule(void)
41 {
42     tPCB * next;
43     tPCB * prev;
44 
45     if(my_current_task == NULL 
46         || my_current_task->next == NULL)
47     {
48         return;
49     }
50     printk(KERN_NOTICE ">>>my_schedule<<<\n");
51     /* schedule */
52     next = my_current_task->next;
53     prev = my_current_task;
54     if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
55     {
56         /* switch to next process */
57         asm volatile(    
58             "pushl %%ebp\n\t"         /* save ebp */
59             "movl %%esp,%0\n\t"     /* save esp */
60             "movl %2,%%esp\n\t"     /* restore  esp */
61             "movl $1f,%1\n\t"       /* save eip */    
62             "pushl %3\n\t" 
63             "ret\n\t"                 /* restore  eip */
64             "1:\t"                  /* next process start here */
65             "popl %%ebp\n\t"
66             : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
67             : "m" (next->thread.sp),"m" (next->thread.ip)
68         ); 
69         my_current_task = next; 
70         printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);       
71     }
72     else
73     {
74         next->state = 0;
75         my_current_task = next;
76         printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
77         /* switch to new process */ 
78         asm volatile(    
79             "pushl %%ebp\n\t"         /* save ebp */ 保存当前进程ebp
80             "movl %%esp,%0\n\t"     /* save esp */ 保存eso
81             "movl %2,%%esp\n\t"     /* restore  esp */ 下一进程的esp放入esp中
82             "movl %2,%%ebp\n\t"     /* restore  ebp */
83             "movl $1f,%1\n\t"       /* save eip */    保存eip
84             "pushl %3\n\t"                             将下一个进程的eip保存在堆栈中
85             "ret\n\t"                 /* restore  eip */
86             : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
87             : "m" (next->thread.sp),"m" (next->thread.ip)
88         );          
89     }   
90     return;    
91 }

 

详细分析:

1.void my_timer_handler(void)设置时间片的大小,时间片用完时设置一下调度标志
2.void my_schedule(void)void my_schedule(void)
{
    tPCB * next;
    tPCB * prev; 当前进程

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next; 当前进程的下一进程给next
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */如果下一个进程状态为0,则切换进程
    {
        /* switch to next process */两个运行的进程之间做进程上下文切换
asm volatile( "pushl %%ebp\n\t" /* save ebp */ 保存当前进程的ebp "movl %%esp,%0\n\t" /* save esp */ 保存esp "movl %2,%%esp\n\t" /* restore esp */ 将下一进程的esp放入esp寄存器中 "movl $1f,%1\n\t" /* save eip */ "pushl %3\n\t" 保存eip
"ret\n\t" /* restore eip */ 将下一进程的eip保存在堆栈中 "1:\t" /* next process start here */ "popl %%ebp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); } else { next->state = 0; 切换到一个新的进程,该进程设为运行
my_current_task
= next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to new process */ asm volatile( "pushl %%ebp\n\t" /* save ebp */ 保存ebp "movl %%esp,%0\n\t" /* save esp */ 保存esp "movl %2,%%esp\n\t" /* restore esp */ "movl %2,%%ebp\n\t" /* restore ebp */ "movl $1f,%1\n\t" /* save eip */ "pushl %3\n\t" 保存当前进程的入口 "ret\n\t" /* restore eip */ : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
三、总结
这个星期的学习让我了解了linux操作系统的相关知识,并且老师通过对代码的讲解,着重让我知道了进程切换机制。在时间片轮转或者其他方式下,进程之间形成一个链表,一个进程运行到一定时间或者达到一定条件的时候,就切换成下一个程序运行,进程切换伴随着堆栈切换。

魏昊卿 原创作品转载请注明出处 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

以上是关于魏昊卿——《Linux内核分析》第二周作业:了解操作系统是怎样工作的的主要内容,如果未能解决你的问题,请参考以下文章

20169203《Linux内核原理与分析》第二周作业

Linux内核分析作业第二周

20169217《Linux内核原理与分析》第二周作业

2017-2018-1 20179219《Linux内核原理与分析》第二周作业

linux内核分析第二周

20169217 《Linux内核原理与分析》 第十二周作业