下一代推荐系统
Posted ァ颏餶こ铭訫の
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了下一代推荐系统相关的知识,希望对你有一定的参考价值。
前言
讨论祖先和子孙的问题一向是比较困难的事情,什么是上一代,他们有什么特点?下一代推荐系统到底是什么?前后代有什么不一样,是什么关键特征定义了下一代? 本文的重点是,讨论一些论文观点,旨在回答以上的一些疑问 从Gediminas Adomavicius和Alexander Tuzhilin的Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions来看(这篇文章引用率非常高),我的理解是:
第一代推荐系统主分三类:
- content-based,基于内容的推荐
- collaborative,基于协同过滤的推荐
- hybrid recommendation, 混合型推荐
第二代推荐系统的主要特点是:
- user和item的理解
- 结合上下文信息
- 支持多维度的评价指标
- 提供更加有弹性和更少打扰的结果
其人
Gediminas Adomavicius在推荐系统方面有很多研究, 有兴趣可以看看CAREER: Next Generation Personalization Technologies,研究主题包括:
- 多准则推荐系统
- 推荐查询语言
- 推荐的多样性
- 时效数据的聚类
- 上下文感知推荐
- 用户偏好对推荐的影响
- 推荐算法的稳定性
- 数据特性对推荐的影响
相关讨论
第一代推荐系统
早期的推荐系统主要是“评分预测”和“TOPN”预测,不论是哪一种推荐方式,其核心的目标是找到最适合用户c的项集合s,从集合里挑选集合是一个非常复杂的问题优化方案,通常采用的方案是用贪婪的方式,而我们只需要定义一个的效用函数,选取TOPN。
基于内容的推荐
定义效用函数为:用户c和项s的内容上的”相似性”,比如商品推荐中,为了一个用户推荐一款合适的商品,会计算商品和用户历史上看过或者买过的某些特征上的相似性(比如:品牌的偏好,类目的偏好,商品的属性,商品标签等等)。很多推荐都会在有文本的实体上进行推荐,改进的主要思路是:
- 扩展实体的文本标记。比如:标签,语义树
- 用户的文本Profile。比如:taste,preferences,needs。
因此,基于内容的推荐算法的关键问题是建立,item的content profile和user的content profile。 对于有问题内容的推荐实体,一般的方法是利用关键词抽取技术,抽取item中最重要的或者最有信息量的一些text。 第一个任务是选择什么的文本,构建的text从来源上可以分成几个,如果来之item本身的内容,通常称为keywords; 如果来自用户的标记,通常称为tags;如果来之外部的query,通常称为intents。 第二个任务是如何在候选词里做weighting和selection。selection的方式一般是用贪心方法,选出topn weighting的词。
构建user的content profile是比较困难的。因为user本生是没有标记的,通常是通过user从前看过的item和当前看过的item做 标记。从时间的维度上,user的content profile可以分成历史和实时部分,历史部分通常是通过挖掘获取,而实时部分通常是 通过巧妙的”average”或者model-based的方法发现用户content profile, 比较出名的content-based推荐系统是Fab, “adaptive filtering”是一种通过user的浏览记录不断提升精度的content profile构建方式
协同过滤推荐
是大家最为熟悉的推荐算法。算法只涉及到user-item的交互矩阵,推荐方式是Heuristic-based(memory-based)方法(item-based和user-based)和 model-based的方法,后面发展的一批改进协同过滤算法的策略,比如:
- Default Voting;
- Inverse User Frequency;
- Case Amplification;
- Weighted-majority Prediction 当然其他的协同过滤算法也非常多,下次讨论协同过滤算法的时候在仔细探讨
混合方法,主要是混合基于内容和协同过滤的方法。变种非常多,这里暂不讨论
第二代推荐系统
- model-based的一些变化。谈到第二代,论文提供了一些扩展,比如:model-based方法,通常是基于统计和机器学习的方法, 后面有演化出一些基于数学近似的方法,我理解的数学近似方法其实很简单, 就像我们在高中学习的展开式,或者泰勒公式等等,用无穷多的弱项组合成一个误差最小的结果。
- 多维度的推荐。其实目前多数的推荐是单维度的,就是对user进行item的推荐,但是有些应用场景,比如:对住在北京的男性用户进行品牌推荐, 或者在妇女节给女性用户推荐优惠商品。这些场景下需要推荐从对个维度上考虑问题,所以在多维的推荐系统中需要一个受众定向的功能。
- 多准则的推荐。一般情况下,我们即需要推荐的准确,多样性,惊喜度,时效性,覆盖率等等指标;有时候,我们需要保证推荐的推荐的品质, 比如高端的品牌推荐,不能给用户推荐一些低质量的品牌商。
- 不打扰。很多系统为了搜集用户的兴趣,有时候会强迫用户给商品打分,这样会干扰用户的行为。 怎么在用打扰用户的情况下,搜集潜在的用户反馈;对新用户怎么增量的用户信息量最大item,也是快速构建用户profile的一种方式。
当然还有很多推荐系统应该解决的问题和扩展, 但是,就这样还不能是二代推荐系统的特征, 推荐系统的发展永远是围绕着“用户体验”来做的。
参考文献
以上是关于下一代推荐系统的主要内容,如果未能解决你的问题,请参考以下文章
进击的下一代推荐系统:多目标学习如何让知乎用户互动率提升100%?