(最大k度限制生成树)POJ 1639 - Picnic Planning

Posted tak_fate

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了(最大k度限制生成树)POJ 1639 - Picnic Planning相关的知识,希望对你有一定的参考价值。

题意:

给一个无向带权图,图上有不超过20个人和1个公园,现在这些人想到公园去集合,他们可以直接去公园也可以,和其他人一起坐车去公园(假设他们的车容量无限),但是这个公园停车场只有k个位置,现在要求他们到达公园所需要的总花费。


 

分析:

乍一看是最小生成树,但是停车场只有k个位置,所以就限定了公园节点只能最多连k个人,也就是说有一个点的度数是给定了的。

想了很久,第一感觉就是想其他生成树那样,肯定要把边删去,从环中选择更优解, 按套路来说。

但是想了很久不知道怎么处理。

不过,看到题目只有20个人,k<20,可以从n个人中选出k个人,与停车场连接,然后跑最小生成树。虽然很暴力,但最大复杂度才C(20,10)*mlogm,看起来不是很大啊,也的的确确A了,但是跑了接近2s,显然POJ数据真的很水。

其实这题是经典的问题,国家队论文里有讲,据说刘汝佳黑书里也有。推荐一个不错的博客:http://blog.csdn.net/nacl__/article/details/52052133

没错,我就是抄他代码的,自己写半天感觉非常搓,不过,他的代码没有删边,

这句话有问题,我修改了一下。

最近看了一下生成树和最短路的题,感觉天天发现新大陆啊。


 

代码:

标程

  1 #include <set>
  2 #include <map>
  3 #include <list>
  4 #include <cmath>
  5 #include <queue>
  6 #include <stack>
  7 #include <vector>
  8 #include <bitset>
  9 #include <string>
 10 #include <cctype>
 11 #include <cstdio>
 12 #include <cstring>
 13 #include <cstdlib>
 14 #include <iostream>
 15 #include <algorithm>
 16 // #include <unordered_map>
 17 
 18 using namespace std;
 19 
 20 typedef long long ll;
 21 typedef unsigned long long ull;
 22 typedef pair<int, int> pii;
 23 typedef pair<ull, ull> puu;
 24 
 25 #define inf (0x3f3f3f3f)
 26 #define lnf (0x3f3f3f3f3f3f3f3f)
 27 #define eps (1e-9)
 28 #define fi first
 29 #define se second
 30 
 31 bool sgn(double a, string select, double b) {
 32     if(select == "==")return fabs(a - b) < eps;
 33     if(select == "!=")return fabs(a - b) > eps;
 34     if(select == "<")return a - b < -eps;
 35     if(select == "<=")return a - b < eps;
 36     if(select == ">")return a - b > eps;
 37     if(select == ">=")return a - b > -eps;
 38 }
 39 
 40 
 41 //--------------------------
 42 
 43 const ll mod = 1000000007;
 44 const int maxn = 30;
 45 
 46 struct Edge {
 47     int u, v, d;
 48     Edge() {}
 49     Edge(int a, int b, int c): u(a), v(b), d(c) {}
 50     bool operator<(const Edge &e)const {
 51         return d < e.d;
 52     }
 53 };
 54 
 55 int n, m, k;
 56 int cnt;
 57 int ans;
 58 int parent[maxn];
 59 map<string, int> nodes;
 60 vector<Edge>edges;
 61 int g[maxn][maxn];
 62 bool tree[maxn][maxn];
 63 int minEdge[maxn];
 64 Edge dp[maxn];
 65 
 66 int find(int p) {
 67     if(p == parent[p])return p;
 68     else return parent[p] = find(parent[p]);
 69 }
 70 
 71 void un(int p, int q) {
 72     parent[find(p)] = find(q);
 73 }
 74 
 75 void Kruskal() {
 76     sort(edges.begin(), edges.end());
 77     for(int i = 0; i < edges.size(); i++) {
 78         int p = edges[i].u;
 79         int q = edges[i].v;
 80         if(p == 1 || q == 1)continue;
 81         if(find(p) != find(q)) {
 82             un(p, q);
 83             tree[p][q] = tree[q][p] = 1;
 84             ans += edges[i].d;
 85         }
 86     }
 87 }
 88 
 89 void dfs(int cur, int pre) {
 90     for(int i = 2; i <= cnt; i++) {
 91         if(i == pre || !tree[cur][i])continue;
 92         if(dp[i].d == -1) {
 93             if(dp[cur].d > g[cur][i])dp[i] = dp[cur];
 94             else {
 95                 dp[i].u = cur;
 96                 dp[i].v = i;
 97                 dp[i].d = g[cur][i];
 98             }
 99         }
100         dfs(i, cur);
101     }
102 }
103 
104 
105 void init() {
106     memset(g, inf, sizeof(g));
107     memset(tree, 0, sizeof(tree));
108     memset(minEdge, inf, sizeof(minEdge));
109     m = 0;
110     cnt = 1;
111     ans = 0;
112     nodes["Park"] = 1;
113     for(int i = 0; i < maxn; i++) {
114         parent[i] = i;
115     }
116 }
117 
118 void solve() {
119     scanf("%d", &n);
120     string s1, s2;
121     int d;
122     init();
123     for(int i = 1; i <= n; i++) {
124         cin >> s1 >> s2 >> d;
125         if(!nodes[s1])nodes[s1] = ++cnt;
126         if(!nodes[s2])nodes[s2] = ++cnt;
127         int u = nodes[s1];
128         int v = nodes[s2];
129         edges.push_back(Edge(u, v, d));
130         g[u][v] = g[v][u] = min(g[u][v], d);
131     }
132     scanf("%d", &k);
133     Kruskal();
134     int keyPoint[maxn];
135     for(int i = 2; i <= cnt; i++) {
136         if(g[1][i] != inf) {
137             int color = find(i);
138             if(minEdge[color] > g[1][i]) {
139                 minEdge[color] = g[1][i];
140                 keyPoint[color] = i;
141 
142             }
143         }
144     }
145     for(int i = 1; i <= cnt; i++) {
146         if(minEdge[i] != inf) {
147             m++;
148             tree[1][keyPoint[i]] = tree[keyPoint[i]][1] = 1;
149             ans += g[1][keyPoint[i]];
150         }
151     }
152     for(int i = m + 1; i <= k; i++) {
153         memset(dp, -1, sizeof(dp));
154         dp[1].d = -inf;
155         for(int j = 2; j <= cnt; j++)
156             if(tree[1][j])
157                 dp[j].d = -inf;
158         dfs(1, -1);
159         int idx, minnum = inf;
160         for(int j = 2; j <= cnt; j++) {
161             if(minnum > g[1][j] - dp[j].d) {
162                 minnum = g[1][j] - dp[j].d;
163                 idx = j;
164             }
165         }
166         if(minnum >= 0)
167             break;
168         tree[1][idx] = tree[idx][1] = 1;
169         tree[dp[idx].u][dp[idx].v] = tree[dp[idx].v][dp[idx].u] = 0;
170         ans += minnum;
171     }
172     printf("Total miles driven: %d\\n", ans);
173 }
174 
175 int main() {
176 
177 #ifndef ONLINE_JUDGE
178     freopen("1.in", "r", stdin);
179     // freopen("1.out", "w", stdout);
180 #endif
181     // iostream::sync_with_stdio(false);
182     solve();
183     return 0;
184 }

 

暴力

  1 #include <set>
  2 #include <map>
  3 #include <list>
  4 #include <cmath>
  5 #include <queue>
  6 #include <stack>
  7 #include <vector>
  8 #include <bitset>
  9 #include <string>
 10 #include <cctype>
 11 #include <cstdio>
 12 #include <cstring>
 13 #include <cstdlib>
 14 #include <iostream>
 15 #include <algorithm>
 16 // #include <unordered_map>
 17 
 18 using namespace std;
 19 
 20 typedef long long ll;
 21 typedef unsigned long long ull;
 22 typedef pair<int, int> pii;
 23 typedef pair<ull, ull> puu;
 24 
 25 #define inf (0x3f3f3f3f)
 26 #define lnf (0x3f3f3f3f3f3f3f3f)
 27 #define eps (1e-9)
 28 #define fi first
 29 #define se second
 30 
 31 bool sgn(double a, string select, double b) {
 32     if(select == "==")return fabs(a - b) < eps;
 33     if(select == "!=")return fabs(a - b) > eps;
 34     if(select == "<")return a - b < -eps;
 35     if(select == "<=")return a - b < eps;
 36     if(select == ">")return a - b > eps;
 37     if(select == ">=")return a - b > -eps;
 38 }
 39 
 40 
 41 //--------------------------
 42 
 43 const ll mod = 1000000007;
 44 const int maxn = 100010;
 45 
 46 int n, k;
 47 
 48 map<string, int> name;
 49 int cnt;
 50 int edn;
 51 int pkn;
 52 
 53 struct Edge {
 54     int u, v, c;
 55 };
 56 
 57 bool cmp(Edge a, Edge b ) {
 58     return a.c < b.c;
 59 }
 60 
 61 
 62 Edge raw_edges[500];
 63 Edge park_edges[500];
 64 Edge edges[500];
 65 
 66 string a, b;
 67 int x;
 68 
 69 int ans = inf;
 70 
 71 int max_park;
 72 
 73 int par[500];
 74 int findx(int x) {
 75     if(par[x] == x)return x;
 76     else return par[x] = findx(par[x]);
 77 }
 78 
 79 
 80 int Kruskal(int n) {
 81     int m = edn + max_park;
 82     for(int i = 0; i < n; i++) {
 83         par[i] = i;
 84     }
 85     sort(edges, edges + m , cmp);
 86     int cnt = 0;
 87     int ans = 0;
 88     for(int i = 0; i < m; i++) {
 89         int u = edges[i].u;
 90         int v = edges[i].v;
 91         int c = edges[i].c;
 92         int t1 = findx(u);
 93         int t2 = findx(v);
 94         if(t1 != t2) {
 95             ans += c;
 96             par[t1] = t2;
 97             cnt++;
 98         }
 99         if(cnt == n - 1)break;
100     }
101     if(cnt < n - 1)return -1;
102     else return ans;
103 }
104 
105 
106 int select[30];
107 
108 void dfs(int now, int pre) {
109     if(now >= max_park) {
110         for(int i = 0; i < edn; i++) {
111             edges[i] = raw_edges[i];
112         }
113         int con = edn;
114         for(int i = 0; i < now; i++) {
115             edges[con++] = park_edges[select[i]];
116         }
117         int mins = Kruskal(cnt);
118         // for(int i = edn; i < con; i++) {
119         //     printf("%d %d\\n", edges[i].u, edges[i].v );
120         // }
121         // printf("res = %d\\n", mins );
122         if(mins != -1) {
123             ans = min(ans, mins);
124         }
125         return ;
126     }
127     for(int i = pre + 1; i < pkn; i++) {
128         select[now] = i;
129         dfs(now + 1, i);
130     }
131 
132 }
133 
134 
135 void solve() {
136     while(cin >> n) {
137         cnt = edn = pkn = 0;
138         ans = inf;
139         name.clear();
140         for(int i = 0; i < n; i++) {
141             cin >> a >> b >> x;
142             if(name.find(a) == name.end()) {
143                 name[a] = cnt++;
144             }
145             if(name.find(b) == name.end()) {
146                 name[b] = cnt++;
147             }
148             if(a == "Park" || b == "Park") {
149                 park_edges[pkn++] = Edge{name[a], name[b], x};
150             } else {
151                 raw_edges[edn++] = Edge{name[a], name[b], x};
152             }
153         }
154         scanf("%d", &k);
155         max_park = min(pkn, k);
156         dfs(0, -1);
157         printf("Total miles driven: %d\\n", ans);
158     }
159 
160 
161 }
162 
163 int main() {
164 
165 #ifndef ONLINE_JUDGE
166     freopen("1.in", "r", stdin);
167     freopen("1.out", "w", stdout);
168 #endif
169     // iostream::sync_with_stdio(false);
170     solve();
171     return 0;
172 }

 

以上是关于(最大k度限制生成树)POJ 1639 - Picnic Planning的主要内容,如果未能解决你的问题,请参考以下文章

POJ 1639 Picnic Planning (最小k度限制生成树)

POJ 1639 Picnic Planning:最小度限制生成树

POJ 1639 Picnic Planning 最小k度生成树

K度限制MST poj 1639

poj 1639 Picnic Planning 度限制mst

度限制MST