一种超级快速的图像二值化技术

Posted 0 1 0 1

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一种超级快速的图像二值化技术相关的知识,希望对你有一定的参考价值。

在计算机视觉中,对图像进行二值化恐怕是最常见的操作了。为了检测目标,可能需要对每一帧图像的每一个像素点进行运算。如果能提升二值化的速度,那么,你的算法的效率就会大大的提高。本文,将介绍一种超级快速的图像二值化技术。

要解决的问题:

如上图所示,需要把彩色图像中,

(1) R通道介于(smoevalue1, somevalue2)
(2) G通道介于(somevalue3, somevalue4)
(3) B通道介于(somevalue5, somevalue6)
当图像中某个像素点同时满足上面3个条件时,将该像素点置为白色,否则置为黑色

1)常用方法介绍
常用的二值化方法,需要判断每一个通道的值是否在某个范围之内。伪代码如下:

 1 if (redcomponent > somevalue1 &&
 2     redcomponent < somevalue2 &&
 3     greencomponent > somevalue3 &&
 4     greencomponent < somevalue4 &&
 5     bluecomponent > somevalue5 &&
 6     bluecomponent < somevalue6)
 7 {
 8     // 将该像素点置为白色
 9 }
10 else
11 {
12     将该像素点置为黑色
13 }

问题是每个像素点的判断,需要6次比较操作,太复杂了。

2)新方法
方法(1)中,对每一个通道都需要比较两次。为了提高速度,需要减少比较次数。
为B、G、R三个通道,每个通道创建一个大小为256的数组。该数组中的初始值,
例如R通道的数组,其在somevalue1到somevalue2,数组中的值是1,其他都是0;
G通道的数组,其在somevalue3到somevalue4,数组中的值是1,其他都是0;
B通道的数组,其在somevalue5到somevalue6,数组中的值是1,其他都是0。
如下图所示:

 


现在,如果要判断某个像素点应该标记为白色还是为黑色,只需要查询数组即可。伪代码如下:

 1 if (table_red[redcomponent] &&
 2     table_green[greencomponent] &&
 3     table_blue[bluecomonent])
 4 {
 5     // 将该像素点置为白色
 6 }
 7 else
 8 {
 9     将该像素点置为黑色
10 }

如果redcomponent的值介于(smoevalue1,somevalue2),那么table_red[redcomponent]=1,如果不在这个范围,那么table_red[redcomponent]=0.其他两个通道的值,也是同理。所以,如果条件(table_red[redcomponent] && table_green[greencomponent] && table_blue[bluecomonent])成立,就表示满足问题中的那3个条件。


3)对方法2的扩展
在方法2中,数组中只保存1或者0,这只需要一个bit 就ok了,如果上述的数组是int型(假设是32位),那么只是用了一个bit,还有31个bit没有是用,那么,其他的31个bit都可以表示一种颜色,就可以实现同时处理32种颜色了。

(4)效率的对比
图像大小(像素点个数) 方法1(ms) 方法2(ms)
73902     1.278624    0.394651
636000   5.791450    2.213925
1555200 13.664513  5.687084

通过实验,可以发现,方法2的速度快了300%。如果是用SIMD指令,速度会更快。

 

以上是关于一种超级快速的图像二值化技术的主要内容,如果未能解决你的问题,请参考以下文章

新手求助,二值化图像怎么去除面积较小的连通域

如何用C语言实现对图像的二值化?

解释一下啥是二值化?

图像灰度化、二值化理解

图像二值化后里面有白点,怎么去除

二值化之后的图像为单通道,那么还能转换为多通道吗