HDU-1542 Atlantis 线段树+扫描线
Posted R o b i n
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU-1542 Atlantis 线段树+扫描线相关的知识,希望对你有一定的参考价值。
Problem Description
There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
Input
The
input file consists of several test cases. Each test case starts with a
line containing a single integer n (1<=n<=100) of available maps.
The n following lines describe one map each. Each of these lines
contains four numbers x1;y1;x2;y2
(0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily
integers. The values (x1; y1) and (x2;y2) are the coordinates of the
top-left resp. bottom-right corner of the mapped area.
The input file is terminated by a line containing a single 0. Don’t process it.
The input file is terminated by a line containing a single 0. Don’t process it.
Output
For
each test case, your program should output one section. The first line
of each section must be “Test case #k”, where k is the number of the
test case (starting with 1). The second one must be “Total explored
area: a”, where a is the total explored area (i.e. the area of the union
of all rectangles in this test case), printed exact to two digits to
the right of the decimal point.
Output a blank line after each test case.
Output a blank line after each test case.
Sample Input
2
10 10 20 20
15 15 25 25.5
0
Sample Output
Test case #1
Total explored area: 180.00
1 #include<cstdio> 2 #include<iostream> 3 #include<algorithm> 4 #include<cstring> 5 using namespace std; 6 #define INF 0x3f3f3f3f 7 #define M(a, b) memset(a, b, sizeof(a)) 8 #define lson o<<1 9 #define rson o<<1|1 10 const int N = 200 + 5; 11 int cnt[N<<2], qL, qR, v; 12 double X[N], sum[N<<2]; 13 struct Segment { 14 double l, r, h; 15 int f; 16 Segment() {} 17 Segment(double l, double r, double h, int f): l(l), r(r), h(h), f(f) {} 18 bool operator < (const Segment &rhs) const { 19 return h < rhs.h; 20 } 21 }node[N]; 22 23 void pushdown(int o, int L, int R) { 24 if (~cnt[o]) { 25 int M = (L + R) >> 1; 26 cnt[lson] = cnt[rson] = cnt[o]; 27 sum[lson] = cnt[lson] ? X[M+1]-X[L] : 0; 28 sum[rson] = cnt[rson] ? X[R+1]-X[M+1] : 0; 29 } 30 } 31 32 void pushup(int o, int L, int R) { 33 if (~cnt[lson] || ~cnt[rson]) cnt[o] = -1; 34 else if (cnt[lson] != cnt[rson]) cnt[o] = -1; 35 else { 36 cnt[o] = cnt[lson]; 37 } 38 sum[o] = sum[lson] + sum[rson]; 39 } 40 41 void build(int o, int L, int R) { 42 if (L == R) {cnt[o] = 0; sum[o] = 0;} 43 else { 44 int M = (L + R) >> 1; 45 build(lson, L, M); 46 build(rson, M+1, R); 47 pushup(o, L, R); 48 } 49 } 50 51 void update(int o, int L, int R) { 52 if (qL <= L && R <= qR) { 53 if (~cnt[o]) { 54 cnt[o] += v; 55 sum[o] = cnt[o] ? X[R+1]-X[L] : 0; 56 return; 57 } 58 } 59 int M = (L + R) >> 1; 60 pushdown(o, L, R); 61 if (qL <= M) update(lson, L, M); 62 if (M < qR) update(rson, M+1, R); 63 pushup(o, L, R); 64 } 65 66 int bin(int L, int R, double key) { 67 while (L < R) { 68 int M = (L + R) >> 1; 69 if (X[M] == key) return M; 70 else if (X[M] < key) L = M + 1; 71 else R = M - 1; 72 } 73 return L; 74 } 75 76 int main() { 77 int T = 0, n; 78 while (scanf("%d", &n), n) { 79 double x1, x2, y1, y2; 80 int num = 0, nn = 0; 81 for (int i = 1; i <= n; ++i) { 82 scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2); 83 X[++num] = x1; X[++num] = x2; 84 node[++nn] = Segment(x1, x2, y1, 1); 85 node[++nn] = Segment(x1, x2, y2, -1); 86 } 87 sort(X+1, X+1+num); sort(node+1, node+1+nn); 88 int k = 1; 89 for (int i = 2; i <= nn; ++i) 90 if (X[i] != X[i-1]) X[++k] = X[i]; 91 build(1, 1, k-1); 92 double ans = 0; 93 for (int i = 1; i < nn; ++i) { 94 qL = bin(1, k, node[i].l); 95 qR = bin(1, k, node[i].r)-1; 96 v = node[i].f; 97 if(qL <= qR) update(1, 1, k-1); 98 ans += sum[1] * (node[i+1].h-node[i].h); 99 } 100 printf("Test case #%d\n", ++T); 101 printf("Total explored area: %.2f\n\n", ans); 102 } 103 104 return 0; 105 }
以上是关于HDU-1542 Atlantis 线段树+扫描线的主要内容,如果未能解决你的问题,请参考以下文章
HDU1542 Atlantis —— 求矩形面积并 线段树 + 扫描线 + 离散化