FunDA(16)- 示范:整合并行运算 - total parallelism solution
Posted 雪川大虫
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了FunDA(16)- 示范:整合并行运算 - total parallelism solution相关的知识,希望对你有一定的参考价值。
在对上两篇讨论中我们介绍了并行运算的两种体现方式:并行构建数据源及并行运算用户自定义函数。我们分别对这两部分进行了示范。本篇我准备示范把这两种情况集成一体的并行运算模式。这次介绍的数据源并行构建方式也与前面描述的有所不同:在前面讨论里我们预知需要从三个独立流来并行构建数据源。但如果我们有一个不知长度的数据流,它的每个元素代表不同的数据流,应该如何处理。我们知道在AQMRPT表里有从1999年到2xxx年的空气质量测量数据,我们可以试着并行把按年份生成的数据流构建成一个数据源。直接使用上期示范中的铺垫代码包括NORMAQM表初始化和从STATES和COUNTIES里用名称搜索对应id的函数:
val db = Database.forConfig("h2db")
//drop original table schema
val futVectorTables = db.run(MTable.getTables)
val futDropTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.drop)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} dropped successfully! ")
case Failure(e) => println(s"Failed to drop Table ${NORMAQMQuery.baseTableRow.tableName}, it may not exist! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf)
//create new table to refine AQMRawTable
val actionCreateTable = Models.NORMAQMQuery.schema.create
val futCreateTable = db.run(actionCreateTable).andThen {
case Success(_) => println("Table created successfully!")
case Failure(e) => println(s"Table may exist already! Error: ${e.getMessage}")
}
//would carry on even fail to create table
Await.ready(futCreateTable,Duration.Inf)
//truncate data, only available in slick 3.2.1
val futTruncateTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.truncate)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} truncated successfully!")
case Failure(e) => println(s"Failed to truncate Table ${NORMAQMQuery.baseTableRow.tableName}! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf)
//a conceived task for the purpose of resource consumption
//getting id with corresponding name from STATES table
def getStateID(state: String): Int = {
//create a stream for state id with state name
implicit def toState(row: StateTable#TableElementType) = StateModel(row.id,row.name)
val stateLoader = FDAViewLoader(slick.jdbc.H2Profile)(toState _)
val stateSeq = stateLoader.fda_typedRows(StateQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val stateStream = fda_staticSource(stateSeq)()
var id = -1
def getid: FDAUserTask[FDAROW] = row => {
row match {
case StateModel(stid,stname) => //target row type
if (stname.contains(state)) {
id = stid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
stateStream.appendTask(getid).startRun
id
}
//another conceived task for the purpose of resource consumption
//getting id with corresponding names from COUNTIES table
def getCountyID(state: String, county: String): Int = {
//create a stream for county id with state name and county name
implicit def toCounty(row: CountyTable#TableElementType) = CountyModel(row.id,row.name)
val countyLoader = FDAViewLoader(slick.jdbc.H2Profile)(toCounty _)
val countySeq = countyLoader.fda_typedRows(CountyQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val countyStream = fda_staticSource(countySeq)()
var id = -1
def getid: FDAUserTask[FDAROW] = row => {
row match {
case CountyModel(cid,cname) => //target row type
if (cname.contains(state) && cname.contains(county)) {
id = cid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
countyStream.appendTask(getid).startRun
id
}
以及两个用户自定义函数:
//process input row and produce action row to insert into NORMAQM
def getIdsThenInsertAction: FDAUserTask[FDAROW] = row => {
row match {
case aqm: AQMRPTModel =>
if (aqm.valid) {
val stateId = getStateID(aqm.state)
val countyId = getCountyID(aqm.state,aqm.county)
val action = NORMAQMQuery += NORMAQMModel(0,aqm.mid, stateId, countyId, aqm.year,aqm.value,aqm.total)
fda_next(FDAActionRow(action))
}
else fda_skip
case _ => fda_skip
}
}
//runner for the action rows
val runner = FDAActionRunner(slick.jdbc.H2Profile)
def runInsertAction: FDAUserTask[FDAROW] = row =>
row match {
case FDAActionRow(action) =>
runner.fda_execAction(action)(db)
fda_skip
case _ => fda_skip
}
跟着是本篇新增代码,我们先构建一个所有年份的流:
//create parallel sources
//get a stream of years
val qryYears = AQMRPTQuery.map(_.year).distinct
case class Years(year: Int) extends FDAROW
implicit def toYears(y: Int) = Years(y)
val yearViewLoader = FDAViewLoader(slick.jdbc.H2Profile)(toYears _)
val yearSeq = yearViewLoader.fda_typedRows(qryYears.result)(db).toSeq
val yearStream = fda_staticSource(yearSeq)()
下面是一个按年份从AQMRPT表读取数据的函数:
//strong row type
implicit def toAQMRPT(row: AQMRPTTable#TableElementType) =
AQMRPTModel(row.rid, row.mid, row.state, row.county, row.year, row.value, row.total, row.valid)
//shared stream loader when operate in parallel mode
val AQMRPTLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toAQMRPT _)
//loading rows with year yr
def loadRowsInYear(yr: Int) = {
//a new query
val query = AQMRPTQuery.filter(row => row.year === yr)
//reuse same loader
AQMRPTLoader.fda_typedStream(AQMRPTQuery.result)(db)(256, 256)()
}
我们可以预见多个loadRowsInYear函数实例会共享统一的FDAStreamLoader AQMRPTLoader。用户自定义数据读取函数类型是FDASourceLoader。下面是FDASourceLoader示范代码:
//loading rows by year
def loadRowsByYear: FDASourceLoader = row => {
row match {
case Years(y) => loadRowsInYear(y) //produce stream of the year
case _ => fda_appendRow(FDANullRow)
}
}
我们用toParSource构建一个并行数据源:
//get parallel source constructor
val parSource = yearStream.toParSource(loadRowsByYear)
用fda_par_source来把并行数据源转换成统一数据流:
//produce a stream from parallel sources
val source = fda_par_source(parSource)(3)
source是个FDAPipeLine,可以直接运算:source.startRun,也可以在后面挂上多个环节。下面我们把其它两个用户自定义函数转成并行运算函数后接到source后面:
//the following is a process of composition of stream combinators
//get parallel source constructor
val parSource = yearStream.toParSource(loadRowsByYear)
//implicit val strategy = Strategy.fromCachedDaemonPool("cachedPool")
//produce a stream from parallel sources
val source = fda_par_source(parSource)(3)
//turn getIdsThenInsertAction into parallel task
val parTasks = source.toPar(getIdsThenInsertAction)
//runPar to produce a new stream
val actionStream =fda_runPar(parTasks)(3)
//turn runInsertAction into parallel task
val parRun = actionStream.toPar(runInsertAction)
//runPar and carry out by startRun
fda_runPar(parRun)(2).startRun
下面是本次示范的完整源代码:
import slick.jdbc.meta._
import com.bayakala.funda._
import api._
import scala.language.implicitConversions
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._
import scala.concurrent.{Await, Future}
import scala.util.{Failure, Success}
import slick.jdbc.H2Profile.api._
import Models._
import fs2.Strategy
object ParallelExecution extends App {
val db = Database.forConfig("h2db")
//drop original table schema
val futVectorTables = db.run(MTable.getTables)
val futDropTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.drop)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} dropped successfully! ")
case Failure(e) => println(s"Failed to drop Table ${NORMAQMQuery.baseTableRow.tableName}, it may not exist! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf)
//create new table to refine AQMRawTable
val actionCreateTable = Models.NORMAQMQuery.schema.create
val futCreateTable = db.run(actionCreateTable).andThen {
case Success(_) => println("Table created successfully!")
case Failure(e) => println(s"Table may exist already! Error: ${e.getMessage}")
}
//would carry on even fail to create table
Await.ready(futCreateTable,Duration.Inf)
//truncate data, only available in slick 3.2.1
val futTruncateTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.truncate)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} truncated successfully!")
case Failure(e) => println(s"Failed to truncate Table ${NORMAQMQuery.baseTableRow.tableName}! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf)
//a conceived task for the purpose of resource consumption
//getting id with corresponding name from STATES table
def getStateID(state: String): Int = {
//create a stream for state id with state name
implicit def toState(row: StateTable#TableElementType) = StateModel(row.id,row.name)
val stateLoader = FDAViewLoader(slick.jdbc.H2Profile)(toState _)
val stateSeq = stateLoader.fda_typedRows(StateQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val stateStream = fda_staticSource(stateSeq)()
var id = -1
def getid: FDAUserTask[FDAROW] = row => {
row match {
case StateModel(stid,stname) => //target row type
if (stname.contains(state)) {
id = stid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
stateStream.appendTask(getid).startRun
id
}
//another conceived task for the purpose of resource consumption
//getting id with corresponding names from COUNTIES table
def getCountyID(state: String, county: String): Int = {
//create a stream for county id with state name and county name
implicit def toCounty(row: CountyTable#TableElementType) = CountyModel(row.id,row.name)
val countyLoader = FDAViewLoader(slick.jdbc.H2Profile)(toCounty _)
val countySeq = countyLoader.fda_typedRows(CountyQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val countyStream = fda_staticSource(countySeq)()
var id = -1
def getid: FDAUserTask[FDAROW] = row => {
row match {
case CountyModel(cid,cname) => //target row type
if (cname.contains(state) && cname.contains(county)) {
id = cid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
countyStream.appendTask(getid).startRun
id
}
//process input row and produce action row to insert into NORMAQM
def getIdsThenInsertAction: FDAUserTask[FDAROW] = row => {
row match {
case aqm: AQMRPTModel =>
if (aqm.valid) {
val stateId = getStateID(aqm.state)
val countyId = getCountyID(aqm.state,aqm.county)
val action = NORMAQMQuery += NORMAQMModel(0,aqm.mid, stateId, countyId, aqm.year,aqm.value,aqm.total)
fda_next(FDAActionRow(action))
}
else fda_skip
case _ => fda_skip
}
}
//runner for the action rows
val runner = FDAActionRunner(slick.jdbc.H2Profile)
def runInsertAction: FDAUserTask[FDAROW] = row =>
row match {
case FDAActionRow(action) =>
runner.fda_execAction(action)(db)
fda_skip
case _ => fda_skip
}
//create parallel sources
//get a stream of years
val qryYears = AQMRPTQuery.map(_.year).distinct
case class Years(year: Int) extends FDAROW
implicit def toYears(y: Int) = Years(y)
val yearViewLoader = FDAViewLoader(slick.jdbc.H2Profile)(toYears _)
val yearSeq = yearViewLoader.fda_typedRows(qryYears.result)(db).toSeq
val yearStream = fda_staticSource(yearSeq)()
//strong row type
implicit def toAQMRPT(row: AQMRPTTable#TableElementType) =
AQMRPTModel(row.rid, row.mid, row.state, row.county, row.year, row.value, row.total, row.valid)
//shared stream loader when operate in parallel mode
val AQMRPTLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toAQMRPT _)
//loading rows with year yr
def loadRowsInYear(yr: Int) = {
//a new query
val query = AQMRPTQuery.filter(row => row.year === yr)
//reuse same loader
AQMRPTLoader.fda_typedStream(AQMRPTQuery.result)(db)(256, 256)()
}
//loading rows by year
def loadRowsByYear: FDASourceLoader = row => {
row match {
case Years(y) => loadRowsInYear(y) //produce stream of the year
case _ => fda_appendRow(FDANullRow)
}
}
//start counter
val cnt_start = System.currentTimeMillis()
def showRecord: FDAUserTask[FDAROW] = row => {
row match {
case Years(y) => println(y); fda_skip
case aqm: AQMRPTModel =>
println(s"${aqm.year} $aqm")
fda_skip
case FDAActionRow(action) =>
println(s"${action}")
fda_skip
case _ => fda_skip
}
}
//the following is a process of composition of stream combinators
//get parallel source constructor
val parSource = yearStream.toParSource(loadRowsByYear)
//implicit val strategy = Strategy.fromCachedDaemonPool("cachedPool")
//produce a stream from parallel sources
val source = fda_par_source(parSource)(3)
//turn getIdsThenInsertAction into parallel task
val parTasks = source.toPar(getIdsThenInsertAction)
//runPar to produce a new stream
val actionStream =fda_runPar(parTasks)(3)
//turn runInsertAction into parallel task
val parRun = actionStream.toPar(runInsertAction)
//runPar and carry out by startRun
fda_runPar(parRun)(2).startRun
println(s"processing 219400 rows parallelly in ${(System.currentTimeMillis - cnt_start)/1000} seconds")
}
以上是关于FunDA(16)- 示范:整合并行运算 - total parallelism solution的主要内容,如果未能解决你的问题,请参考以下文章
FunDA(17)- 示范:异常处理与事后处理 - Exceptions handling and Finalizers
Scalaz(58)- scalaz-stream: fs2-并行运算示范,fs2 parallel processing
FunDA- 流动数据行操作:FDAPipeLine operations using scalaz-stream-fs2