SparkR-Install

Posted Mr.Zhao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SparkR-Install相关的知识,希望对你有一定的参考价值。

1.下载R

 1.1 下载URL:https://cran.r-project.org/src/base/R-3/

 

 1.2 环境变量配置 

 1.3 测试安装:

 

2.下载Rtools33

 URL:https://cran.r-project.org/bin/windows/Rtools/

2.1 配置环境变量

2.2 测试安装成功

3.安装RStudio

   URL: https://www.rstudio.com/products/rstudio/download/

     直接下一步即可安装

    

4.安装JDK并设置环境变量

  4.1环境变量配置:

   

  

  

  4.2测试:

5.下载Spark安装程序

  5.1 URL: http://spark.apache.org/downloads.html

    

 

     5.2解压到本地磁盘的对应目录

 

      

6.安装Spark并设置环境变量

    

   

7.测试SparkR

  

  

  注意:如果发现了提示 WARN NativeCodeLader:Unable to load native-hadoop library for your platform.....using

builtin-java classes where applicable  需要安装本地的hadoop库

8.下载hadoop库并安装

  URL: http://hadoop.apache.org/releases.html

  

   

 

9.设置hadoop环境变量

   

   

10.重新测试SparkR

   10.1 如果测试时候出现以下提示,需要修改log4j文件INFO为WARN,位于\\spark\\conf下

   

    10.2 修改conf中的log4j文件:

    

       

     10.3 重新运行SparkR,输出就会变少

     

11.运行SprkR代码

    在Spark2.0中增加了RSparkSql进行Sql查询

    dataframe为数据框操作

    data-manipulation为数据转化

    ml为机器学习

    

   11.1 使用crtl+ALT+鼠標左鍵 打开控制台在此文件夹下

  

  11.2 执行spark-submit xxx.R文件即可

 

12.安装SparkR包

    12.1 将spark安装目录下的R/lib中的SparkR文件拷贝到..\\R-3.3.2\\library中,注意是将整个Spark文件夹,而非里面每一个文件。

    源文件夹:

      

     目的文件夹:

        

 

     12.2  在RStudio中打开SparkR文件并运行代码dataframe.R文件,采用Ctrl+Enter一行行执行即可

     SparkR语言的dataframe.R源代码如下

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

library(SparkR)

# Initialize SparkContext and SQLContext
sc <- sparkR.init(appName="SparkR-DataFrame-example")
sqlContext <- sparkRSQL.init(sc)

# Create a simple local data.frame
localDF <- data.frame(name=c("John", "Smith", "Sarah"), age=c(19, 23, 18))

# Convert local data frame to a SparkR DataFrame
df <- createDataFrame(sqlContext, localDF)

# Print its schema
printSchema(df)
# root
#  |-- name: string (nullable = true)
#  |-- age: double (nullable = true)

# Create a DataFrame from a JSON file
path <- file.path(Sys.getenv("SPARK_HOME"), "examples/src/main/resources/people.json")
peopleDF <- read.json(sqlContext, path)
printSchema(peopleDF)

# Register this DataFrame as a table.
registerTempTable(peopleDF, "people")

# SQL statements can be run by using the sql methods provided by sqlContext
teenagers <- sql(sqlContext, "SELECT name FROM people WHERE age >= 13 AND age <= 19")

# Call collect to get a local data.frame
teenagersLocalDF <- collect(teenagers)

# Print the teenagers in our dataset 
print(teenagersLocalDF)

# Stop the SparkContext now
sparkR.stop()

13.Rsudio 运行结果

      

 补充:SparkR自带机器学习的例子:(D:\\......\\spark-1.6.0-bin-hadoop2.6\\spark-1.6.0-bin-hadoop2.6\\examples\\src\\main\\r)

  源代码如下:     

 1 #
 2 # Licensed to the Apache Software Foundation (ASF) under one or more
 3 # contributor license agreements.  See the NOTICE file distributed with
 4 # this work for additional information regarding copyright ownership.
 5 # The ASF licenses this file to You under the Apache License, Version 2.0
 6 # (the "License"); you may not use this file except in compliance with
 7 # the License.  You may obtain a copy of the License at
 8 #
 9 #    http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16 #
17 
18 # To run this example use
19 # ./bin/sparkR examples/src/main/r/ml.R
20 
21 # Load SparkR library into your R session
22 library(SparkR)
23 
24 # Initialize SparkContext and SQLContext
25 sc <- sparkR.init(appName="SparkR-ML-example")
26 sqlContext <- sparkRSQL.init(sc)
27 
28 # Train GLM of family \'gaussian\'
29 training1 <- suppressWarnings(createDataFrame(sqlContext, iris))
30 test1 <- training1
31 model1 <- glm(Sepal_Length ~ Sepal_Width + Species, training1, family = "gaussian")
32 
33 # Model summary
34 summary(model1)
35 
36 # Prediction
37 predictions1 <- predict(model1, test1)
38 head(select(predictions1, "Sepal_Length", "prediction"))
39 
40 # Train GLM of family \'binomial\'
41 training2 <- filter(training1, training1$Species != "setosa")
42 test2 <- training2
43 model2 <- glm(Species ~ Sepal_Length + Sepal_Width, data = training2, family = "binomial")
44 
45 # Model summary
46 summary(model2)
47 
48 # Prediction (Currently the output of prediction for binomial GLM is the indexed label,
49 # we need to transform back to the original string label later)
50 predictions2 <- predict(model2, test2)
51 head(select(predictions2, "Species", "prediction"))
52 
53 # Stop the SparkContext now
54 sparkR.stop()

  运行结果:

    

    

END~

以上是关于SparkR-Install的主要内容,如果未能解决你的问题,请参考以下文章

VSCode自定义代码片段——CSS选择器

谷歌浏览器调试jsp 引入代码片段,如何调试代码片段中的js

片段和活动之间的核心区别是啥?哪些代码可以写成片段?

VSCode自定义代码片段——.vue文件的模板

VSCode自定义代码片段6——CSS选择器

VSCode自定义代码片段——声明函数