ElasticSearch学习
Posted TiestoRay
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ElasticSearch学习相关的知识,希望对你有一定的参考价值。
前言:ES学习可参考 《Elasticsearch: 权威指南》,这个在线电子书内容介绍的很是详细。
本文使用的ElasticSearch版本是 2.4.2
目录
安装
首先我们需要去官网下载安装包 官方下载地址
解压后结构是这样的(2.5以上版本会有plugins目录,没有的需要手动创建)
创建一个es用户(因为es不允许使用root用户启动)
useradd es
将该目录权限修改为es用户所有
chown es:es -hR .
所有要作为es节点的机器都要执行以上操作
安装插件
ES的插件都是要安装到 es安装目录/plugins/ 下
官网插件地址 :https://www.elastic.co/guide/en/elasticsearch/plugins/2.4/intro.html
1.elasticsearch-head
这是一个elasticsearch的集群管理工具,它是完全由html5编写的独立网页程序,通过这个插件可以可视化监控ES。
我使用的是版本2.4.2,安装起来很是简单,在ES根目录下执行
bin/plugin install mobz/elasticsearch-head
成功之后在页面上访问 http://192.168.0.39:9200/_plugin/head/ 即可。
其他版本或者更多详情,参考官网:https://github.com/mobz/elasticsearch-head
ES5以后就不能用安装的方式启动head插件了,除了安装之外,还需要在elasticsearch.yml里面增加:
http.cors.enabled : true http.cors.allow-origin : "*"
2.中文分词器 ik
官网 https://github.com/medcl/elasticsearch-analysis-ik
下载源码之后进行解压
然后用maven编译
maven package
成功后安装包在target/releases/elasticsearch-analysis-ik-x.x.x.zip
将这个压缩包解压到es的插件的对应目录下即可(plugins/ik)。
最后 重启ES集群
3.elasticsearch-analysis-pinyin 分词器
4.nGram
我们用ik分词器的时候,检索的时候会把搜索词进行分词然后检索。如
搜索 “我们的生活”,优先是包含这5个字的,但是也会返回包含“我们”和“生活”的数据。
但是有时候我们不需要这么智能,只需要完全匹配的进行搜索。这就需要用到ngram了。(不需要单独安装,只需要设置settings即可)
先上一个例子
POST url : localhost:9200/ngramtest Content-Type: application/json { "settings": { "analysis": { "analyzer": { "charSplit": { "type": "custom", "tokenizer": "my_ngram_tokenizer", "filter":["lowercase"] } }, "tokenizer": { "my_ngram_tokenizer": { "type": "nGram", "min_gram": "2", "max_gram": "4", "token_chars": ["letter","digit","punctuation"] } } } }, "mappings": { "myType": { "dynamic": "strict", "properties": { "content": { "type": "string", "analyzer": "charSplit", "search_analyzer": "charSplit" } } } } }
属性settings.analysis.tokenizer下面的 my_ngram_tokenizer 对象是自定义的tokenizer
settings.analysis.analyzer.charSplit 则是基于 my_ngram_tokenizer 的自定义分词器
关于my_ngram_tokenizer 中的属性:
min_gram:单个词的最小长度,默认1 max_gram:单个词的最大长度,默认2 token_chars:可以接受的字符集(即遇到不在列表中的字符集会进行文本分割) 字符集包括 letter 字母或汉字 a, b, ï or 京 digit 数字 3 or 7 whitespace 空白(空格、回车、tab等) " " or "\\n" punctuation 标点符号 ! , 。or " symbol 标志(区别于标点符号) $ or √
可以从下面的例子了解一下
配置片段 "token_chars": ["letter","digit","punctuation"]
即接收文字数字和标点,那现在我在内容中添加symbol标记 $
POST 192.168.5.222:9200/yuqingtest/_analyze?pretty&analyzer=charSplit 商业核心和$标准化技术
返回结果
{ "tokens": [ { "token": "商业核", "start_offset": 0, "end_offset": 3, "type": "word", "position": 0 }, { "token": "商业核心", "start_offset": 0, "end_offset": 4, "type": "word", "position": 1 }, { "token": "业核心", "start_offset": 1, "end_offset": 4, "type": "word", "position": 2 }, { "token": "业核心和", "start_offset": 1, "end_offset": 5, "type": "word", "position": 3 }, { "token": "核心和", "start_offset": 2, "end_offset": 5, "type": "word", "position": 4 }, { "token": "标准化", "start_offset": 6, "end_offset": 9, "type": "word", "position": 5 }, { "token": "标准化技", "start_offset": 6, "end_offset": 10, "type": "word", "position": 6 }, { "token": "准化技", "start_offset": 7, "end_offset": 10, "type": "word", "position": 7 }, { "token": "准化技术", "start_offset": 7, "end_offset": 11, "type": "word", "position": 8 }, { "token": "化技术", "start_offset": 8, "end_offset": 11, "type": "word", "position": 9 } ] }
可以看到$分割开了左右的词
5. delete-by-query
ES的条件删除API从2.0开始就已经被删掉了,之后版本只能通过安装插件的方式进行条件删除。
bin/plugin install delete-by-query
注:集群环境下必须在每个结点上安装且重启结点后插件才会生效。
使用方式跟2.0以前的版本一样。
配置
ES的配置除了一些必要的选项,其他的不要修改,因为能优化的地方官方都已经优化了,如果改了反而可能引起各种问题。
配置文件只需要改动config/elasticsearch.yml 的4个地方即可
... cluster.name: my-es-cluster ... node.name: node1 ... network.host: 192.168.245.139 ...
discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["192.168.0.37", "192.168.0.38","192.168.0.39"]
要注意的是 yml类型的配置文件 冒号后面必须要有一个空格 否则读取的时候会认为格式不正确。
discovery.zen.ping.unicast.hosts 是指定Master的备选节点;如果不添加这一行,那将成为单点的ES。
其他可改动项:
①路径
默认情况下, Elasticsearch 会把插件、日志以及你最重要的数据放在安装目录下。这会带来不幸的事故, 如果你重新安装 Elasticsearch 的时候不小心把安装目录覆盖了,你就可能把你的全部数据删掉了。
最好的选择就是把你的数据目录配置到安装目录以外的地方, 同样你也可以选择转移你的插件和日志目录。
#注意:你可以通过逗号分隔指定多个目录。
path.data: /path/to/data1,/path/to/data2 # Path to log files: path.logs: /path/to/logs # Path to where plugins are installed: path.plugins: /path/to/plugins
②脑裂相关
ES集群中Master承担了更大的请求和计算压力,如果Master崩了的话,会出现脑裂问题(Split Brain)
所以我们进行职责分离:
指定若干节点只作为Master,添加配置
node.master: true node.data: false
其他的作为DataNode,添加配置
node.master: false node.data: true
改变发现机制
discovery.zen.ping.multicast.enabled: false
延长主节点发现时间(确定Master失联的时间间隔)
discovery.zen.ping_timeout: 3
( master 候选节点个数 / 2) + 1
,例如有3个master候选节点的话:discovery.zen.minimum_master_nodes: 2
启动
#先进入ES安装路径 su es //切换到之前创建的es用户 bin/elasticsearch #bin/elasticsearch -d(也可以后台运行)
关闭
kill `jps |grep Elasticsearch |cut -c1-5`
在浏览器上输入 http://<IP>:9200/
{ "name" : "myhost", "cluster_name" : "my-es-cluster", "cluster_uuid" : "UZHnaRT7R06kBjKh6Qbzvg", "version" : { "number" : "2.4.2", "build_hash" : "161c65a337d4b422ac0c805f284565cf2014bb84", "build_timestamp" : "2017-03-17T11:51:03Z", "build_snapshot" : false, "lucene_version" : "5.5.2" }, "tagline" : "You Know, for Search" }
看到以上结构内容则表明安装配置成功
CURL命令
cluster
#查看集群健康状态
http://192.168.0.37:9200/_cluster/health
#集群统计
http://192.168.0.37:9200/_cluster/stats
#健康状况(分片级别)
http://192.168.0.45:9200/_cluster/health?level=shards
#查看资源占用情况(还有更多参数可设置)
localhost:9200/_cat/nodes?v&h=host,heap.current,heap.percent,heap.max,ram.max,disk.avail,node.role,m
index
#创建index curl -XPUT http://192.168.5.222:9200/index_name/ #删除index curl -XDELETE http://192.168.5.222:9200/index_name/ #查看index curl -XGET http://192.168.5.222:9200/index_name/
type
#新增/更新Type(不在url的最后指定id的话,es会自动生成id) curl -XPOST http://192.168.5.222:9200/index_name/emp/1 -d \'{"first_name" : "John","age" : 25,"about" : "I love to go rock climbing","interests": ["sports","music"]}\' #检索Type curl -XGET http://192.168.5.222:9200/index_name/emp/1?pretty #查询所有字段 curl –XGET http://192.168.5.222:9200/index_name/emp/1/_source #只返回部分字段 curl -XGET http://192.168.5.222:9200/index_name/emp/1?_source=name,age #返回所有数据 curl -XGET http://192.168.5.222:9200/index_name/emp/_search #简单的条件查询 curl -XGET http://192.168.5.222:9200/index_name/emp/_search?q=first_name:Smith #根据ID删除 curl -XDELETE http://192.168.5.222:9200/index_name/emp/1 #条件删除 curl -XDELETE \'http://localhost:9200/index_name/emp,user/_query?q=user:kimchy\' #清空表数据 curl -X DELETE http://192.168.0.39:9200/<index_name>/<type_name>/_query -d \'{"query": {"match_all": {}}}\' #查看分词情况 curl -XPOST http://192.168.5.222:9200/index_name/_analyze?pretty&analyzer=charSplit -d \'商业核心和$标准化技术\'
type的复杂查询(DSL),这种查询同时支持GET和POST,不过使用CURL命令来POST数据太不直观,我都是使用Postman
#新增type
POST 192.168.5.222:9200/yuqingtest/article/ Content-Type: application/json { "title" : "政协副主席建议提高境外黑匣子", "content" : "使用了商业核心和$标准化技术,相比以前的非标$准化方案,更容易维护和支持哈哈有个黑匣子在外面。" }
#查询(查询相关语句太多)
{ "query": { "multi_match": { "query": "黑匣子", "type": "phrase", "slop": 1, "fields": [ "content" ], "max_expansions": 1 } }, "highlight" : { "pre_tags" : ["<tag1>", "<tag2>"], "post_tags" : ["</tag1>", "</tag2>"], "fields" : { "content" : {} } }, "sort":{ "createTime":{"order":"esc"} } }
JAVA API
ES官方提供的Javaapi用起来不是很方便(org.elasticsearch.elasticsearch)
官方Java Api文档地址:https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/index.html
用spring的封装版就好得多(org.springframework.data.spring-data-elasticsearch),尤其是结合springboot后,精简了配置等相关操作,开发效率更是提升
pom的依赖以及配置参考 Springboot结合elasticsearch,下面只看重点
略过ArticleEntity
Repo
public interface ArticleRepository extends ElasticsearchRepository<ArticleEntity, String> { }
增删改查例子
package com.ray.estest; import java.util.ArrayList; import java.util.List; import java.util.Map; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.index.query.BoolQueryBuilder; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.index.query.RangeQueryBuilder; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.highlight.HighlightBuilder.Field; import org.elasticsearch.search.highlight.HighlightField; import org.elasticsearch.search.sort.SortBuilder; import org.elasticsearch.search.sort.SortBuilders; import org.elasticsearch.search.sort.SortOrder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.domain.Page; import org.springframework.data.domain.PageRequest; import org.springframework.data.domain.Pageable; import org.springframework.data.elasticsearch.core.ElasticsearchTemplate; import org.springframework.data.elasticsearch.core.SearchResultMapper; import org.springframework.data.elasticsearch.core.aggregation.AggregatedPage; import org.springframework.data.elasticsearch.core.aggregation.impl.AggregatedPageImpl; import org.springframework.data.elasticsearch.core.query.NativeSearchQueryBuilder; import org.springframework.data.elasticsearch.core.query.SearchQuery; import com.product.yq_common.utils.StringUtils; import com.product.yq_service.entity.input.ArticleDetailInput; import com.product.yq_service.entity.input.ArticleQueryEntity; import com.product.yq_service.entity.output.ArticleSummaryInfoEntity; import com.product.yq_serviceimpl.entity.ArticleEntity; import com.product.yq_serviceimpl.repo.ArticleRepository; /** * @author Ray * 2017年3月30日 */ public class ArticleServiceImpl { @Autowired private ArticleRepository repo; @Autowired private ElasticsearchTemplate elasticsearchTemplate; public Object getArticles(ArticleQueryEntity entity) throws Exception { List<ArticleSummaryInfoEntity> articles = new ArrayList<ArticleSummaryInfoEntity>(); // 分页 Pageable pager = new PageRequest(0, 10); // 构建查询语句 BoolQueryBuilder qb = QueryBuilders.boolQuery().must(QueryBuilders.termQuery("deleted", false)) .must(QueryBuilders.termQuery("name", "Zhang"))// term一般用于not_analyzed .must(QueryBuilders.matchQuery("favorite", entity.getType()));// match则用于analyzed // 拼接条件 if (!StringUtils.isEmpty(entity.getSearchWord())) { // multiMatchQuery 混合查询 同时检索多个字段 qb = qb.must(QueryBuilders.multiMatchQuery(entity.getSearchWord(), "title", "summary")); } if (!StringUtils.isEmpty(entity.getStartDate()) || !StringUtils.isEmpty(entity.getEndDate())) { // 区间查询 gt,lt,gte,lte,from-to, RangeQueryBuilder rqb = QueryBuilders.rangeQuery("createDate"); if (!StringUtils.isEmpty(entity.getStartDate())) { rqb = rqb.gte(entity.getStartDate()); } if (!StringUtils.isEmpty(entity.getEndDate())) { rqb = rqb.lte(entity.getEndDate()); } qb = qb.must(rqb); } // 排序(最好不要用字符串类型的Field做排序) SortBuilder sort = SortBuilders.fieldSort("createTime").order(SortOrder.DESC); // 开始组装 SearchQuery query = new NativeSearchQueryBuilder().withQuery(qb).withSort(sort).withPageable(pager).build(); // 返回的是带有分页数据的对象 Page<ArticleEntity> entities = repo.search(query); long total = entities.getTotalElements(); int pages = entities.getTotalPages(); List<ArticleEntity> rst = entities.getContent(); return rst; } /** * 更新 */ public void update(ArticleDetailInput entity) throws Exception { ArticleEntity oriES = repo.findOne(entity.getArticleId()); oriES.setTitle(entity.getTitle()); oriES.setContent(entity.getContent()); repo.save(oriES); } /** * 添加 */ public String add(ArticleDetailInput entity) throws Exception { ArticleEntity oriES = new ArticleEntity(); oriES.setTitle("这是title"); oriES.setContent("这是content"); oriES = repo.save(oriES); return oriES.getArticleId();// articleId映射ES中的ID } /** * 获取详情 */ public Object detail(String id) throws Exception { return repo.findOne(id); } /** * 删除 */ public void delete(String id) throws Exception { repo.delete(id); } /** * 根据关键词进行搜索并返回高亮内容 */ public Object searchByWords(String word) throws Exception { List<ArticleSummaryInfoEntity> articles = new ArrayList<ArticleSummaryInfoEntity>(); Pageable pager = new PageRequest(0, 10); // 构建查询语句 BoolQueryBuilder qb = QueryBuilders.boolQuery().must(QueryBuilders.termQuery("deleted", false)) .must(QueryBuilders.multiMatchQuery(word, "title", "content")); String preTags = "<span class=\'highlight\'>"; String postTags = "</span>"; // 设置要高亮的字段,高亮的前后标签,高亮内容的截取长度 Field fTitle = new Field("title").preTags(preTags).postTags(postTags).fragmentSize(100); Field fContent = new Field("content").preTags(preTags).postTags(postTags).fragmentSize(100); SearchQuery query = new NativeSearchQueryBuilder().withQuery(qb).withPageable(pager) .withHighlightFields(fTitle, fContent).build(); elasticsearchTemplate.queryForPage(query, ArticleEntity.class, new SearchResultMapper() { @SuppressWarnings("unchecked") @Override public <T> AggregatedPage<T> mapResults(SearchResponse response, Class<T> clazz, Pageable pageable) { // 总个数 long total = response.getHits().getTotalHits(); // 总页数 int pages = (int) Math.ceil((double) total / pager.getPageSize()); if (response.getHits().getTotalHits() <= 0) { return null; } for (SearchHit searchHit : response.getHits()) { ArticleSummaryInfoEntity item = new ArticleSummaryInfoEntity(); articles.add(item); Map<String, Object> source = searchHit.getSource(); item.setArticleId(source.get("articleId").toString()); Map<String, HighlightField> highlightFields = searchHit.getHighlightFields(); // 查看高亮字段是否命中 HighlightField hlTitleField = highlightFields.get("title"); if (hlTitleField != null && hlTitleField.fragments() != null) { item.setTitle((hlTitleField.fragments()[0].string())); } else { item.setTitle((String) source.get("title")); } HighlightField hlContentField = highlightFields.get("content"); if (hlContentField != null && hlContentField.fragments() != null) { item.setSummary(hlContentField.fragments()[0].string()); } else { item.setSummary((String) source.get("summary")); } } return new AggregatedPageImpl<T>((List<T>) articles); } }); return articles; } }
如果使用ngram让部分字段实现完全匹配查询,除了要设置要mappings,java代码中也会有点小改动:给QueryBuilder设置slop和type
...... // 构建查询语句 BoolQueryBuilder qb = QueryBuilders.boolQuery().must(QueryBuilders.multiMatchQuery(search, "content").slop(1).type(Type.PHRASE)); ......
与大数据组件的结合使用
ES官方提供一个ES与hadoop组件连接器(ES-Hadoop)
这些组件包括HDFS、Spark、Storm、Hive、Pig、MapReduce、Cascading
该连接器支持各种版本的Hadoop(CDH, MapR, HDP)
要注意的是,这个连接器并不需要以插件的形式安装,只是提供Hadoop与ES交互的Jar包。
Elastic系配套组件
Kibana
ES中数据可视化的组件,十分强大。在可视化方面,支持多种数据模型(地图、时间序列、graph、机器学习等);同时在一定程度上还支持ES的管理和安全
LogStash
数据处理管道,能够同时 从多个来源采集数据、转换数据,然后将数据发送到存储库(当然大部分是存到ES中)。
管道中可指定过滤器以过滤解析数据,官方提供了过滤器库以处理各种数据
ES-Hadoop
参考 与大数据组件的结合使用
X-Pack security (由X-Pack提供)
维护Elastic Stack中的安全权限
Beats
轻量型数据采集器,集合了多种单一用途数据采集器。这些采集器安装后可用作轻量型代理,从成百上千或成千上万台机器向 Logstash 或 Elasticsearch 发送数据。
这些单用途采集器包括:
FileBeat(日志)、MetricBeat(指标)、PacketBeat(网络)、WinlogBeat(Windows事件日志)、AuditBeat(审计日志)、HeartBeat(运行时间监控)
由于这些采集器使用通用接口,且底层都是基于libbeat进行数据转发,所以采集器的扩展变得简单。
其他
1.ES的文件存储结构与hadoop十分类似,二者可以搭配使用,详情参阅https://www.elastic.co/products/hadoop
2.当出现Unassigned分片时,我们可以通过分片重分配解决这个问题
curl -X PUT http://192.168.0.37:9200/_cluster/settings \\ -d \'{ "transient": { "cluster.routing.allocation.enable": "all" } }\'
3.如果是用spring-data-elasticsearch访问es服务,那么必须二者版本要对应起来,2.x版本的es对应springboot1.5*,2+版本的es对应springboot 2*
参考:
- http://www.programcreek.com/java-api-examples/index.php?api=org.springframework.data.elasticsearch.core.query.SearchQuery
- elasticsearch系列
以上是关于ElasticSearch学习的主要内容,如果未能解决你的问题,请参考以下文章