JS 的异步遍历,你真的会写吗?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了JS 的异步遍历,你真的会写吗?相关的知识,希望对你有一定的参考价值。
参考技术A我们有时候需要遍历数组的元素,将它们传入到异步函数中执行,其中的异步写法容易写错,我们来看一下有哪些易错点。
假设我们有个异步方法 sleepPromise,形式如下:
这里为了方便演示,使用 setTimeout 写成了个 promise 形式的 sleep 方法。传入的 t 为延迟执行的时间,msg 为信息内容。
在实际开发中,异步方法可能是传入用户好友 id 查找数据库,获得简单的好友信息。
假设我们需要在下面代码的注释位置下方写一个异步便利实现。
通常前端一看到要遍历数组,就会用 forEach。如果你不够老道,可能会写出如下的实现:
输出结果为;
这种写法并不对,其实是将遍历写成了同步。
问题出在哪?出在 forEach 本身并不支持异步写法,你在 forEach 方法的前面加不加 await 关键字都是无效的,因为它的内部没有处理异步的逻辑。
forEach 是 ES5 的 API,要比 ES6 的 Promise 要早的多得多。为了向后兼容,forEach 以后也不会支持异步处理。
所以 forEach 的执行并不会阻塞 loopAsync 之后的代码,所以会导致阻塞失败,先输出 [end] 。
使用普通的 for 循环写法,await 的外层函数就仍就是 loopAysnc 方法,就能正确保存阻塞代码。
但这里的问题是,这些异步方法的执行是 串行 的。可以看到总共执行了 6 s。
如果我们的这些请求是有顺序的依赖关系的,这样写是没问题。
但如果我们的场景是根据用户 id 数组从数据库中查找对应用户名,我们的时间复杂度就是 O(n) ,是不合理的。
此时我们需要改写为 并行 的异步,并且还要保证所有异步都执行完后才执行下一步。我们可以用 Promise.all() 。
首先,我们需要根据 tasks 数组生成对应的 promise 对象数组,然后传入到 Promise.all 方法中执行。
这样,这些异步方法就会同时执行。当所有异步都执行完毕后,代码才往下执行。
输出结果如下:
3 秒就完事了,太强了。
前面说到 forEach 底层并没有实现异步的处理,才导致阻塞失效,那么我们其实不妨实现支持异步的简易 forEach。
并行实现:
串行实现:
用法:
简单总结一下。
一般来说,我们更常用 Promise.all 的并行执行异步的方法,常见于数据库查找一些 id 对应的数据的场景。
for 循环的串行写法适用于多个异步有依赖的情况,比如找最终推荐人。
forEach 则是纯粹的错误写法,除非是不需要使用 async/await 的情况。
你真的会写单例模式吗
原文出处: 吃桔子的攻城狮
单例模式可能是代码最少的模式了,但是少不一定意味着简单,想要用好、用对单例模式,还真得费一番脑筋。本文对Java中常见的单例模式写法做了一个总结,如有错漏之处,恳请读者指正。
饿汉法
顾名思义,饿汉法就是在第一次引用该类的时候就创建对象实例,而不管实际是否需要创建。代码如下:
1
2
3
4
5
6
7
|
public class Singleton { private static Singleton = new Singleton(); private Singleton() {} public static getSignleton(){ return singleton; } } |
这样做的好处是编写简单,但是无法做到延迟创建对象。但是我们很多时候都希望对象可以尽可能地延迟加载,从而减小负载,所以就需要下面的懒汉法:
单线程写法
这种写法是最简单的,由私有构造器和一个公有静态工厂方法构成,在工厂方法中对singleton进行null判断,如果是null就new一个出来,最后返回singleton对象。这种方法可以实现延时加载,但是有一个致命弱点:线程不安全。如果有两条线程同时调用getSingleton()方法,就有很大可能导致重复创建对象。
1
2
3
4
5
6
7
8
|
public class Singleton { private static Singleton singleton = null ; private Singleton(){} public static Singleton getSingleton() { if (singleton == null ) singleton = new Singleton(); return singleton; } } |
考虑线程安全的写法
这种写法考虑了线程安全,将对singleton的null判断以及new的部分使用synchronized进行加锁。同时,对singleton对象使用volatile关键字进行限制,保证其对所有线程的可见性,并且禁止对其进行指令重排序优化。如此即可从语义上保证这种单例模式写法是线程安全的。注意,这里说的是语义上,实际使用中还是存在小坑的,会在后文写到。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
public class Singleton { private static volatile Singleton singleton = null ; private Singleton(){} public static Singleton getSingleton(){ synchronized (Singleton. class ){ if (singleton == null ){ singleton = new Singleton(); } } return singleton; } } |
兼顾线程安全和效率的写法
虽然上面这种写法是可以正确运行的,但是其效率低下,还是无法实际应用。因为每次调用getSingleton()方法,都必须在synchronized这里进行排队,而真正遇到需要new的情况是非常少的。所以,就诞生了第三种写法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
public class Singleton { private static volatile Singleton singleton = null ; private Singleton(){} public static Singleton getSingleton(){ if (singleton == null ){ synchronized (Singleton. class ){ if (singleton == null ){ singleton = new Singleton(); } } } return singleton; } } |
这种写法被称为“双重检查锁”,顾名思义,就是在getSingleton()方法中,进行两次null检查。看似多此一举,但实际上却极大提升了并发度,进而提升了性能。为什么可以提高并发度呢?就像上文说的,在单例中new的情况非常少,绝大多数都是可以并行的读操作。因此在加锁前多进行一次null检查就可以减少绝大多数的加锁操作,执行效率提高的目的也就达到了。
坑
那么,这种写法是不是绝对安全呢?前面说了,从语义角度来看,并没有什么问题。但是其实还是有坑。说这个坑之前我们要先来看看volatile这个关键字。其实这个关键字有两层语义。第一层语义相信大家都比较熟悉,就是可见性。可见性指的是在一个线程中对该变量的修改会马上由工作内存(Work Memory)写回主内存(Main Memory),所以会马上反应在其它线程的读取操作中。顺便一提,工作内存和主内存可以近似理解为实际电脑中的高速缓存和主存,工作内存是线程独享的,主存是线程共享的。volatile的第二层语义是禁止指令重排序优化。大家知道我们写的代码(尤其是多线程代码),由于编译器优化,在实际执行的时候可能与我们编写的顺序不同。编译器只保证程序执行结果与源代码相同,却不保证实际指令的顺序与源代码相同。这在单线程看起来没什么问题,然而一旦引入多线程,这种乱序就可能导致严重问题。volatile关键字就可以从语义上解决这个问题。
注意,前面反复提到“从语义上讲是没有问题的”,但是很不幸,禁止指令重排优化这条语义直到jdk1.5以后才能正确工作。此前的JDK中即使将变量声明为volatile也无法完全避免重排序所导致的问题。所以,在jdk1.5版本前,双重检查锁形式的单例模式是无法保证线程安全的。
静态内部类法
那么,有没有一种延时加载,并且能保证线程安全的简单写法呢?我们可以把Singleton实例放到一个静态内部类中,这样就避免了静态实例在Singleton类加载的时候就创建对象,并且由于静态内部类只会被加载一次,所以这种写法也是线程安全的:
1
2
3
4
5
6
7
8
9
10
11
|
public class Singleton { private static class Holder { private static Singleton singleton = new Singleton(); } private Singleton(){} public static Singleton getSingleton(){ return Holder.singleton; } } |
但是,上面提到的所有实现方式都有两个共同的缺点:
- 都需要额外的工作(Serializable、transient、readResolve())来实现序列化,否则每次反序列化一个序列化的对象实例时都会创建一个新的实例。
- 可能会有人使用反射强行调用我们的私有构造器(如果要避免这种情况,可以修改构造器,让它在创建第二个实例的时候抛异常)。
枚举写法
当然,还有一种更加优雅的方法来实现单例模式,那就是枚举写法:
1
2
3
4
5
6
7
8
9
10
|
public enum Singleton { INSTANCE; private String name; public String getName(){ return name; } public void setName(String name){ this .name = name; } } |
使用枚举除了线程安全和防止反射强行调用构造器之外,还提供了自动序列化机制,防止反序列化的时候创建新的对象。因此,Effective Java推荐尽可能地使用枚举来实现单例。
总结
这篇文章发出去以后得到许多反馈,这让我受宠若惊,觉得应该再写一点小结。代码没有一劳永逸的写法,只有在特定条件下最合适的写法。在不同的平台、不同的开发环境(尤其是jdk版本)下,自然有不同的最优解(或者说较优解)。
比如枚举,虽然Effective Java中推荐使用,但是在Android平台上却是不被推荐的。在这篇Android Training中明确指出:
Enums often require more than twice as much memory as static constants. You should strictly avoid using enums on Android.
再比如双重检查锁法,不能在jdk1.5之前使用,而在Android平台上使用就比较放心了(一般Android都是jdk1.6以上了,不仅修正了volatile的语义问题,还加入了不少锁优化,使得多线程同步的开销降低不少)。
最后,不管采取何种方案,请时刻牢记单例的三大要点:
- 线程安全
- 延迟加载
- 序列化与反序列化安全
以上是关于JS 的异步遍历,你真的会写吗?的主要内容,如果未能解决你的问题,请参考以下文章