poj 3233 Matrix Power Series - 矩阵快速幂

Posted 阿波罗2003

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj 3233 Matrix Power Series - 矩阵快速幂相关的知识,希望对你有一定的参考价值。

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

  The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

  Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

  这道题直接暴力呢。。$O\\left(n^{3}k\\right)$的时间复杂度,必死无疑。所以只能另寻出路,注意到矩阵满足分配律

矩阵乘法的右分配律 若$A$和$B$皆为$n$行$p$列的矩阵,$C$为$p$行$m$列的矩阵,则有

$(A + B)C = AB + AC$

  左分配律差不多(因为矩阵乘法不满足交换律,所以矩阵乘法的分配律分为左分配律和右分配律)

  证明就水水的写一下

  对于$A + B$,我们有$\\left(A + B \\right )_{ij} = A_{ij} + B_{ij}$

  那么

$\\left[\\left(A + B \\right )C \\right ]_{ij}\\\\=\\sum_{i = 1}^{p}\\left(A + B \\right )_{ip}C_{pj}\\\\=\\sum_{i = 1}^{p}A_{ip}C_{pj} + \\sum_{i = 1}^{p}B_{ip}C_{pj}\\\\=\\left(AC + BC \\right )_{ij}$

  所以$(A + B)C = AB + AC$

  因为有了分配律这个神奇东西,现在计算$A + A^{2} + \\cdots + A^{6}$的和,就等价于$\\left(A + A^{2} + A^{3} \\right ) + \\left(A + A^{2} + A^{3} \\right )A^{3}$

  现在设$f\\left(n \\right ) = \\sum_{i = 1}^{n}A^{i}$

  那么有

$f\\left ( n \\right )=\\left\\{\\begin{matrix}A\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\left(n = 1 \\right )\\\\f\\left(n - 1 \\right ) + A^{n}\\ \\ \\ \\left(2 \\nmid n \\right ) \\\\ f\\left(\\frac{n}{2}\\right) \\left(I + A^{\\frac{n}{2}} \\right )\\ \\ \\left(2 \\mid n \\right )  \\end{matrix}\\right.$

  时间复杂度是$O\\left(n^{3}\\log^{2}k \\right )$,但是如果代码写得比较丑就有TLE的风险,可以考虑一下以下优化

  1. 不要没事就作无用的初始化,很耗时间]
  2. 降低取模次数
  3. 适当地使用取模优化
  4. 减少无用的内存拷贝的次数

Code

  1 /**
  2  * poj
  3  * Problem#3233
  4  * Accepted
  5  * Time:2266ms
  6  * Memory:3892k 
  7  */
  8 #include<iostream>
  9 #include<cstdio>
 10 #include<cctype>
 11 #include<cstring>
 12 #include<cstdlib>
 13 #include<fstream>
 14 #include<sstream>
 15 #include<algorithm>
 16 #include<map>
 17 #include<set>
 18 #include<queue>
 19 #include<vector>
 20 #include<stack>
 21 using namespace std;
 22 typedef bool boolean;
 23 #define INF 0xfffffff
 24 #define smin(a, b) a = min(a, b)
 25 #define smax(a, b) a = max(a, b)
 26 template<typename T>
 27 inline void readInteger(T& u){
 28     char x;
 29     int aFlag = 1;
 30     while(!isdigit((x = getchar())) && x != \'-\');
 31     if(x == \'-\'){
 32         x = getchar();
 33         aFlag = -1;
 34     }
 35     for(u = x - \'0\'; isdigit((x = getchar())); u = (u << 1) + (u << 3) + x - \'0\');
 36     ungetc(x, stdin);
 37     u *= aFlag;
 38 }
 39 
 40 typedef class Matrix {
 41     public:
 42         int* p;
 43         int lines, cols;
 44         int moder;
 45         Matrix():p(NULL), lines(0), cols(0), moder(1)    {    } 
 46         Matrix(int lines, int cols, int moder):lines(lines), cols(cols), moder(moder) {
 47             p = new int[(lines * cols)];
 48         }
 49         
 50         int* operator [](int pos) {
 51             return p + pos * cols;
 52         }
 53         
 54         Matrix operator *(Matrix b) {
 55             Matrix res(lines, b.cols, moder);
 56             for(int i = 0; i < lines; i++) {
 57                 for(int j = 0; j < b.cols; j++) {
 58                     res[i][j] = 0;
 59                     for(int k = 0; k < cols; k++) {
 60                         (res[i][j] += (*this)[i][k] * b[k][j] % moder) %= moder;
 61                     }
 62                 }
 63             }
 64             return res;
 65         }
 66         
 67         Matrix operator +(Matrix b) {
 68             Matrix res(lines, cols, moder);
 69             for(int i = 0; i < lines; i++)
 70                 for(int j = 0; j < cols; j++)
 71                     res[i][j] = ((*this)[i][j] + b[i][j]) % moder;
 72             return res;
 73         }
 74 }Matrix;
 75 
 76 template<typename T>
 77 T pow(T a, int pos) {
 78     if(pos == 1)    return a;
 79     T temp = pow(a, pos / 2);
 80     if(pos & 1)    return temp * temp * a;
 81     return temp * temp;
 82 }
 83 
 84 int n, k, m;
 85 Matrix a;
 86 
 87 inline void init() {
 88     readInteger(n);
 89     readInteger(k);
 90     readInteger(m);
 91     a = Matrix(n, n, m);
 92     for(int i = 0; i < n; i++) {
 93         for(int j = 0; j < n; j++) {
 94             readInteger(a[i][j]);
 95             a[i][j] %= m;
 96         }
 97     }
 98 }
 99 
100 template<typename T>
101 T pow_sum(T a, int pos) {
102     if(pos == 1)    return a;
103     T temp = pow_sum(a, pos / 2);
104     temp = temp + temp * pow(a, pos / 2);
105     if(pos & 1)    return temp + pow(a, pos);
106     return temp;
107 }
108 
109 Matrix res;
110 inline void solve() {
111     res = pow_sum(a, k);
112     for(int i = 0; i < n; i++) {
113         for(int j = 0; j < n; j++) {
114             printf("%d ", res[i][j]);
115         }
116         putchar(\'\\n\');
117     }
118 }
119 
120 int main() {
121     init();
122     solve();
123     return 0;
124 }

 

以上是关于poj 3233 Matrix Power Series - 矩阵快速幂的主要内容,如果未能解决你的问题,请参考以下文章

POJ3233 Matrix Power Series

poj 3233 Matrix Power Series

POJ3233 Matrix Power Series

POJ 3233 Matrix Power Series 经典矩阵快速幂+二分

poj3233 Matrix Power Series

POJ3233 Matrix Power Series