R语言之正态性检验
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言之正态性检验相关的知识,希望对你有一定的参考价值。
数据的正态性是很多统计方法的基础,因此正态性检验也是必不可少的,下面介绍使用R进行正态性检验的几种方法
1.Shaprio-Wilk检验
用于比较样本数据与正态分布是否存在显著不同,使用Shapiro.test()函数实现,格式为Shapiro.test(data),要求data为向量格式。
2.Kolmogorov-Smirnov检验
该检验用于比较两种分布是否相同,或者将样本与某已知分布进行比较,可以使用ks.test()函数实现,格式为ks.test(x,y...),其中x是想检验的向量,y是与x对比的向量或者为某分布感受,如qmorm(),格式也要求为向量格式。
3.QQ图
也称为分位数-分位数图,如果两个分布相同,则产生的数据点会落在一条直线上,可以使用qqplot()函数实现两个分布或向量的对比,如qqplot(rpois(50,5),rnorm(50,5,1)),qqplot(data2,data1)。
在此,我们需要添加一条直线方便我们判断,使用abline()函数可以完成,但是该函数需要指定直线的斜率和截距,因此我们需要进行一些计算,如:
> qqp<-qqplot(data2,rnorm(50,5,2))
> abline(lm(qqp$x~qqp$y))
首先在使用qqplot()的时候,返回的结果中包含了x和y值,我们将其命名为qqp,以便随后使用lm()函数提取这两个值拟合线性模型得到斜率和截距,以此作为abline的参数。
此外,还有一个qqnorm()函数专门用来和正态分布作对比,并且有专门的qqline()函数做对比直线。
以上是关于R语言之正态性检验的主要内容,如果未能解决你的问题,请参考以下文章
R语言manova函数多元方差分析(MANOVA)单因素多元方差分析的两个假设是多元正态性和方差-协方差矩阵的齐性QQ图评估多元正态性mvoutlier包中的aq.plot函数检验多变量异常值
R语言使用wilcox.test函数进行两组数据的Wilcoxon符号秩检验wilcox.test函数添加paired参数则为Wilcoxon signed rank,当t检验需要的正态性条件不满足
R语言自定义编写函数生成学生化残差的直方图(dist of studentized residuals),并叠加标准正太曲线核密度曲线轴须图rug曲线检验模型是否满足正态性(normality)