排序 & 常用算法

Posted novalist

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了排序 & 常用算法相关的知识,希望对你有一定的参考价值。

一、快速排序QuickSort

快速排序和归并排序都使用分治法来设计算法,区别在于归并排序把数组分为两个基本等长的子数组,分别排好序之后还要进行归并(Merge)操作,而快速排序拆分子数组的时候显得更有艺术,取一个基准元素,拆分之后基准元素左边的元素都比基准元素小,右边的元素都不小于基准元素,这样只需要分别对两个子数组排序即可,不再像归并排序一样需要归并操作。

 

二、深度优先 与 广度优先

原文地址:http://blog.csdn.net/sunny04/article/details/41911655

1.概念

广度优先搜索(BFS),可以被形象的描述为“浅尝辄止”,具体一点就是每个顶点只访问它的邻接节点(如果它的邻接节点没有被访问)并且记录这个邻接节点,当访问完它的邻接节点之后就结束这个顶点的访问。

广度优先用到了“先进先出”队列,通过这个队列来存储第一次发现的节点,以便下一次的处理;而对于再次发现的节点,我们不予理会——不放入队列,因为再次发现的节点:

  1. 无非是已经处理完的了;
  2. 或者是存储在队列中尚未处理的;

深度优先搜索(DFS),可以被形象的描述为“打破沙锅问到底”,具体一点就是访问一个顶点之后,我继而访问它的下一个邻接的顶点,如此往复,直到当前顶点一被访问或者它不存在邻接的顶点。

 

2.通俗理解
相当于在漆黑的夜里,你只能看清你站的位置和你前面的路,但你不知道每条路能够通向哪里。 搜索的任务就是,给出初始位置和目标位置,要求找到一条到达目标的路径。

深度优先就是,从初始点出发,不断向前走,如果碰到死路了,就往回走一步,尝试另一条路,直到发现了目标位置。这种不撞南墙不回头的方法,即使成功也不一定找到一条好路,但好处是需要记住的位置比较少。 广度优先就是,从初始点出发,把所有可能的路径都走一遍,如果里面没有目标位置,则尝试把所有两步能够到的位置都走一遍,看有没有目标位置;如果还不行,则尝试所有三步可以到的位置。这种方法,一定可以找到一条最短路径,但需要记忆的内容实在很多,要量力而行。

 

3.总结

两个算法都是O(V+E),在用到的时候适当选取。在使用白灰黑标志的时候,突然明白了如何用深度优先搜索来判断有向图中是否存在环。

深度优先和广度优先各有各的优缺点:

  • 广优的话,占内存多,能找到最优解,必须遍历所有分枝. 广优的一个应用就是迪科斯彻单元最短路径算法.
  • 深优的话,占内存少,能找到最优解(一定条件下),但能很快找到接近解(优点),可能不必遍历所有分枝(也就是速度快), 深优的一个应用就是连连看游戏.

在更多的情况下,深优是比较好的方案。

 

三、迪杰斯特拉

戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。

迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题(其实也可以使用深度优先搜索),算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

 

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(uv) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 wE → [0, ∞] 定义。因此,w(uv) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想像成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。

 

四、动态规划算法

 

以上是关于排序 & 常用算法的主要内容,如果未能解决你的问题,请参考以下文章

每日算法图算法(遍历&MST&最短路径&拓扑排序)

常用排序算法总结

常用排序算法

常用排序算法总结

七种常用排序算法

C++算法之——常用算法总结