HDU 3622 Bomb Game(二分+2-SAT)

Posted Blackops

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 3622 Bomb Game(二分+2-SAT)相关的知识,希望对你有一定的参考价值。

Bomb Game

Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5396    Accepted Submission(s): 1925

Problem Description
Robbie is playing an interesting computer game. The game field is an unbounded 2-dimensional region. There are N rounds in the game. At each round, the computer will give Robbie two places, and Robbie should choose one of them to put a bomb. The explosion area of the bomb is a circle whose center is just the chosen place. Robbie can control the power of the bomb, that is, he can control the radius of each circle. A strange requirement is that there should be no common area for any two circles. The final score is the minimum radius of all the N circles.
Robbie has cracked the game, and he has known all the candidate places of each round before the game starts. Now he wants to know the maximum score he can get with the optimal strategy.
 

 

Input
The first line of each test case is an integer N (2 <= N <= 100), indicating the number of rounds. Then N lines follow. The i-th line contains four integers x1i, y1i, x2i, y2i, indicating that the coordinates of the two candidate places of the i-th round are (x1i, y1i) and (x2i, y2i). All the coordinates are in the range [-10000, 10000].
 

 

Output
Output one float number for each test case, indicating the best possible score. The result should be rounded to two decimal places.
 

 

Sample Input
2
1 1 1 -1
-1 -1 -1 1
2
1 1 -1 -1
1 -1 -1 1
 

 

Sample Output
1.41
1.00
 
 
题目链接:HDU 3622
很明显的二分题,二分爆炸半径r使得被选中的炸弹的爆炸出的圆面积均没有相交(边缘可以重叠)即可。
代码:
#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const double eps = 1e-5;
const int N = 110;
const int M = N * N * 4;
struct edge
{
    int to, nxt;
    edge() {}
    edge(int _to, int _nxt): to(_to), nxt(_nxt) {}
};
pii P[N];
edge E[M];
int head[N << 1], tot;
int dfn[N << 1], low[N << 1], st[N << 1], belong[N << 1], ts, scc, top;
bitset < N << 1 > ins;
int n;

void init()
{
    CLR(head, -1);
    tot = 0;
    CLR(dfn, 0);
    CLR(low, 0);
    CLR(belong, 0);
    ts = scc = top = 0;
    ins.reset();
}
inline void add(int s, int t)
{
    E[tot] = edge(t, head[s]);
    head[s] = tot++;
}
void Tarjan(int u)
{
    dfn[u] = low[u] = ++ts;
    st[top++] = u;
    ins[u] = 1;
    int i, v;
    for (i = head[u]; ~i; i = E[i].nxt)
    {
        v = E[i].to;
        if (!dfn[v])
        {
            Tarjan(v);
            low[u] = min(low[u], low[v]);
        }
        else if (ins[v])

            low[u] = min(low[u], dfn[v]);
    }
    if (dfn[u] == low[u])
    {
        ++scc;
        do
        {
            v = st[--top];
            ins[v] = 0;
            belong[v] = scc;
        }
        while (u != v);
    }
}
inline double cal(const pii &a, const pii &b)
{
    return sqrt((a.first - b.first) * (a.first - b.first) + (a.second - b.second) * (a.second - b.second));
}
bool check(double r, int sz)
{
    init();
    int i, j;
    for (i = 0; i < sz; i += 2)
    {
        for (j = i + 2; j < sz; ++j)
        {
            double dx = cal(P[i], P[j]);
            if (dx < 2 * r)
            {
                add(i, j ^ 1);
                add(j, i ^ 1);
            }
        }
    }
    for (i = 1; i < sz; i += 2)
    {
        for (j = i + 1; j < sz; ++j)
        {
            double dx = cal(P[i], P[j]);
            if (dx < 2 * r)
            {
                add(i, j ^ 1);
                add(j, i ^ 1);
            }
        }
    }
    for (i = 0; i < sz; ++i)
        if (!dfn[i])
            Tarjan(i);
    for (i = 0; i < sz; ++i)
        if (belong[i] == belong[i ^ 1])
            return false;
    return true;
}
int main(void)
{
    int i;
    while (~scanf("%d", &n))
    {
        for (i = 0; i < (n << 1); i += 2)
            scanf("%d%d%d%d", &P[i].first, &P[i].second, &P[i | 1].first, &P[i | 1].second);
        double L = 0, R = 10000 * 1.45;
        double ans = 0;
        while (R - L >= eps)
        {
            double mid = (L + R) / 2.0;
            if (check(mid, n << 1))
            {
                L = mid;
                ans = mid;
            }
            else
                R = mid;
        }
        printf("%.2f\n", ans);
    }
    return 0;
}

以上是关于HDU 3622 Bomb Game(二分+2-SAT)的主要内容,如果未能解决你的问题,请参考以下文章

2-SATHDU3622-Bomb Game

HDU3622(二分+2-SAT)

hdu 3622 二分+2-sat

二分+2-sat——hdu3062

hdu 1054 Strategic Game 二分图最小点覆盖

HDU 1054 Strategic Game(无向二分图的最大匹配)