浅析libevent
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了浅析libevent相关的知识,希望对你有一定的参考价值。
参考技术A libevent是一个轻量级的开源高性能网络库,基于事件驱动,跨平台支持WIN linux Mac 支持多种IO多路复用技术,支持 IO 定时器和信号等事件的统一调度,支持注册事件的优先级。memcache 使用libevent作为底层网络库。Reactor 模式:
我们普通的函数调用 ,是程序调用某函数 ,函数执行中一直等待该函数执行完之后再继续执行下面的代码。Reactor 模式是一种事件驱动机制。和普通的函数调用不同的是这里的应用程序不是主动的调用某个API函数完成处理,而是恰恰相反,Reactor逆置了事件处理流程,应用程序需要提供相应的接口并注册到Reactor,如果相应的事件发生,Reactor将主动调用应用 注册的接口,这些函数是回调函数。开始用户会在相应的event中设置回调函数和相应监听句柄并由libevent中的Reactor实例进行管理。
采用Reactor模式是编写高性能网络服务器的必备技术之一:
优点:响应快,不会因为某个同步事件所阻塞,因为采用的是回调函数执行,虽然Reactor本身是同步的。
采用Reactor框架本身与具体事件的处理没有关系,只负责处理与用户的交互,具有很高复用性。
可以扩展多个Reactor实例来实现多CPU的资源利用
因为采用了阻塞的select epoll等IO复用函数进行阻塞监听批量的句柄,所以在事件到来时事件的处理逻辑,也就是回调函数不会阻塞住,而是非阻塞的执行。
应用场景:
1.初始化libevent的实例也就是struct event_base结构体也就是对应的Reactor模型在libevent中的实体
struct event_base *base = event_init();
2.用户初始化所要注册的事件 根据不同的事件,网络中主要包括 定时事件,IO事件,信号事件,libevent中使用宏方便用户根据不同的事件调用与事件名称相匹配的函数,但是内部全部都是调用一个借口event_set(),参数中对于所有时间都会有一个函数指针用于用户注册回调函数,一个句柄(对于IO事件就是文件描述符,信号就是信号的编号,对于定时事件不用设置)
3.将事件本身的基本信息设置好之后要和Reactor的实例也就是和某一个event_base 进行联系,因为可能存在多个event_base 实例
4.基本信息设置完成之后,调用event_add 函数将事件通过Reactor实例也就是struct_base的统一接口找到性能最高的IO复用函数注册到其中,包括设置超时时间。对于定时事件,libevent使用一个小根堆管理,key为超时时间,对于IO和信号事件,将该事件放到等待双向链表中,
5.进入无限循环等待就绪事件,以epoll为例,每次循环前,libevent都会检查定时事件中最小的超时时间tv,根据tv设置epoll的最大等待时间,以便后面及时处理超时事件,当epoll超时返回后就将超时事件添加到就绪队列如果是正确返回就不用添加超时事件,之后同样直接依次遍历就绪队列执行相应的回调函数处理逻辑。此处可以看出是同步处理逻辑的。(IO事件已经在epoll_wait中添加进了就绪队列了)
IO和timer事件的统一:
因为系统提供的IO机制像select或者epoll_wait 都允许程序制定一个最大的等待时间,也称作最大超时时间timeout,即使没有IO事件发生,也能保证能在timeout时间到达时候返回。
根据所有timer事件的最小超时事件来设置系统IO的timeout时间,当系统IO返回时候再激活所有继续的timer事件就可以了,这样就能将timer事件完美的融合到系统的IO机制中去了。这是Reactor 和Proactor模式中处理Timer事件最经典的方法了。
libevent支持多线程:
libevent代码本身不支持多线程,因为源代码没有同步机制。
但是可以采用消息通知机制来支持多线程:
1.暴力抢占:当一个线程正在执行的时候,此时主线程来了一个任务此时立即抢占执行主线程的任务,此时好处是任务可以立即得到处理,但是你必须处理好切换的问题,过多的切换也会为CPU带来效率问题。
2.消息通知机制:当主进程有一个任务需要处理的时候会发送一个消息通知你去执行任务,此时当前进程还是执行自己的任务,在自己的任务执行完后,查看消息说通知有一个任务,再去处理任务,但是通知消息不是立即查看的,没有很好的实时性。
3.消息通知+同步层 :有个折中的处理方式,就是中间增减一个任务队列,这个任务队列是所有线程都可以看到的,每个线程都将新任务扔到这个队列中并且发送一个字符来通知,得到通知的当前线程只是取出其中的一个任务。当然,对于这个任务的操作都是同步的,也就是每一个线程操作要加锁,这就是一个加锁的队列。
libevent学习笔记(参考libevent深度剖析)
最近自学libevent事件驱动库,参考的资料为libevent2.2版本以及张亮提供的《Libevent源码深度剖析》,
参考资料: http://blog.csdn.net/sparkliang/article/details/4957667
libevent好处之类的就不赘述了,libevent和libiop,redis等一样都是采用事件回调机制,这种模式
被称作Reactor模式。正常事件处理流程是应用程序调用某个接口触发某个功能,而Reactor模式需要
我们将这些接口和宿主指针(谁调用这些接口)注册在Reactor,在合适的时机Reactor使用宿主指针
调用注册好的回调函数。
一: Reactor基本知识
Reactor 模式是编写高性能网络服务器的必备技术之一,它具有如下的优点:
1)响应快,不必为单个同步时间所阻塞,虽然 Reactor 本身依然是同步的;
2)编程相对简单,可以最大程度的避免复杂的多线程及同步问题,并且避免了多线程/
进程的切换开销;
3)可扩展性,可以方便的通过增加 Reactor 实例个数来充分利用 CPU 资源;
4)可复用性, reactor 框架本身与具体事件处理逻辑无关,具有很高的复用性;
Reactor模式框架
1) Handle 意思为句柄,在Linux表示文件描述符,在windows是socket或者handle。
2)EventDemultiplexer 表示事件多路分发机制,调用系统提供的I/O多路复用机制,
比如select,epoll,程序先将关注的句柄注册到EventDemultiplexer上,当有关注的事件
到来时,触发EventDemultiplexer通知程序,程序调用之前注册好的回调函数完成消息
相应。对应到 libevent 中,依然是 select、 poll、 epoll 等,但是 libevent 使用结构体eventop
进行了 封装,以统一的接口来支持这些 I/O 多路复用机制,达到了对外隐藏底层系统机制的目的。
3)Reactor——反应器
Reactor,是事件管理的接口,内部使用 event demultiplexer 注册、注销事件;并运行事
件循环,当有事件进入“就绪”状态时,调用注册事件的回调函数处理事件。
对应到 libevent 中,就是 event_base 结构体。
一个典型的Reactor声明方式
class Reactor
{
public:
int register_handler(Event_Handler *pHandler, int event);
int remove_handler(Event_Handler *pHandler, int event);
void handle_events(timeval *ptv);
// ...
};
4) Event Handler——事件处理程序
事件处理程序提供了一组接口,每个接口对应了一种类型的事件,供 Reactor 在相应的
事件发生时调用,执行相应的事件处理。通常它会绑定一个有效的句柄。
对应到 libevent 中,就是 event 结构体。
下面是两种典型的 Event Handler 类声明方式, 二者互有优缺点。
7
class Event_Handler
{
public:
virtual void handle_read() = 0;
virtual void handle_write() = 0;
virtual void handle_timeout() = 0;
virtual void handle_close() = 0;
virtual HANDLE get_handle() = 0;
// ...
};
class Event_Handler
{
public:
// events maybe read/write/timeout/close .etc
virtual void handle_events(int events) = 0;
virtual HANDLE get_handle() = 0;
// ...
};
二:如何使用libevent库提供的API
1)首先初始化 libevent 库,并保存返回的指针
struct event_base * base = event_init();
实际上这一步相当于初始化一个 Reactor 实例;在初始化 libevent 后,就可以注册事件了。
2)设置event属性和回调函数
调用函数void event_set(struct event *ev, int fd, short event, void (*cb)(int,
short, void *), void *arg);
每个参数的意义:
ev:执行要初始化的 event 对象;
fd:该 event 绑定的“句柄”,对于信号事件,它就是关注的信号;
event:在该 fd 上关注的事件类型,它可以是 EV_READ, EV_WRITE, EV_SIGNAL;
cb:这是一个函数指针,当 fd 上的事件 event 发生时,调用该函数执行处理,它有三个参数,
分别是关注的fd, 关注的事件类型(读/写/信号),回调函数的参数void* arg,调用时由
event_base 负责传入,按顺序,实际上就是 event_set 时的 fd, event 和 arg;
arg:传递给 cb 函数指针的参数;
由于定时事件不需要 fd,并且定时事件是根据添加时( event_add)的超时值设定的,因此
这里 event 也不需要设置。
这一步相当于初始化一个 event handler,在 libevent 中事件类型保存在 event 结构体中。
注意: libevent 并不会管理 event 事件集合,这需要应用程序自行管理;
3)设置 event 从属的 event_base
event_base_set(base, &ev);
这一步相当于指明 event 要注册到哪个 event_base 实例上;
4)将事件添加到事件队列里
event_add(&ev, timeout);
基本信息都已设置完成,只要简单的调用 event_add()函数即可完成,其中 timeout 是定时值;
10
这一步相当于调用 Reactor::register_handler()函数注册事件。
5)程序进入无限循环,等待就绪事件并执行事件处理
event_base_dispatch(base);
看一下libevent提供的sample
int main(int argc, char **argv) { struct event evfifo; #ifdef WIN32 HANDLE socket; /* Open a file. */ socket = CreateFileA("test.txt", /* open File */ GENERIC_READ, /* open for reading */ 0, /* do not share */ NULL, /* no security */ OPEN_EXISTING, /* existing file only */ FILE_ATTRIBUTE_NORMAL, /* normal file */ NULL); /* no attr. template */ if (socket == INVALID_HANDLE_VALUE) return 1; #else struct stat st; const char *fifo = "event.fifo"; int socket; if (lstat(fifo, &st) == 0) { if ((st.st_mode & S_IFMT) == S_IFREG) { errno = EEXIST; perror("lstat"); exit(1); } } unlink(fifo); if (mkfifo(fifo, 0600) == -1) { perror("mkfifo"); exit(1); } /* Linux pipes are broken, we need O_RDWR instead of O_RDONLY */ #ifdef __linux socket = open(fifo, O_RDWR | O_NONBLOCK, 0); #else socket = open(fifo, O_RDONLY | O_NONBLOCK, 0); #endif if (socket == -1) { perror("open"); exit(1); } fprintf(stderr, "Write data to %s\\n", fifo); #endif /* Initalize the event library */ event_init(); /* Initalize one event */ #ifdef WIN32 event_set(&evfifo, (evutil_socket_t)socket, EV_READ, fifo_read, &evfifo); #else event_set(&evfifo, socket, EV_READ, fifo_read, &evfifo); #endif /* Add it to the active events, without a timeout */ event_add(&evfifo, NULL); event_dispatch(); #ifdef WIN32 CloseHandle(socket); #endif return (0); }
main函数里调用event_init()初始化一个event_base,
之后调用event_set对event设置了回调函数和读事件关注,
event_add将此事件加入event队列里,超时设置为空
最后调用event_dispatch()进行事件轮训派发。
fifo_read是一个回调函数,格式就是之前说的cb格式
static void fifo_read(evutil_socket_t fd, short event, void *arg) { char buf[255]; int len; struct event *ev = arg; #ifdef WIN32 DWORD dwBytesRead; #endif /* Reschedule this event */ event_add(ev, NULL); fprintf(stderr, "fifo_read called with fd: %d, event: %d, arg: %p\\n", (int)fd, event, arg); #ifdef WIN32 len = ReadFile((HANDLE)fd, buf, sizeof(buf) - 1, &dwBytesRead, NULL); /* Check for end of file. */ if (len && dwBytesRead == 0) { fprintf(stderr, "End Of File"); event_del(ev); return; } buf[dwBytesRead] = \'\\0\'; #else len = read(fd, buf, sizeof(buf) - 1); if (len == -1) { perror("read"); return; } else if (len == 0) { fprintf(stderr, "Connection closed\\n"); return; } buf[len] = \'\\0\'; #endif fprintf(stdout, "Read: %s\\n", buf); }
三:《libevent 代码深度剖析》中对文件组织进行了归类
1)头文主要就是 event.h:事件宏定义、接口函数声明,主要结构体 event 的声明;
2)内部头文件
xxx-internal.h:内部数据结构和函数,对外不可见,以达到信息隐藏的目的;
3) libevent 框架
event.c: event 整体框架的代码实现;
4)对系统 I/O 多路复用机制的封装
epoll.c:对 epoll 的封装;
select.c:对 select 的封装;
devpoll.c:对 dev/poll 的封装;
kqueue.c:对 kqueue 的封装;
5)定时事件管理
min-heap.h:其实就是一个以时间作为 key 的小根堆结构;
6)信号管理
signal.c:对信号事件的处理;
7)辅助功能函数
evutil.h 和 evutil.c:一些辅助功能函数,包括创建 socket pair 和一些时间操作函数:加、减
和比较等。
8)日志
log.h 和 log.c: log 日志函数
9)缓冲区管理
evbuffer.c 和 buffer.c: libevent 对缓冲区的封装;
10)基本数据结构
compat\\sys 下的两个源文件: queue.h 是 libevent 基本数据结构的实现,包括链表,双向链表,
队列等; _libevent_time.h:一些用于时间操作的结构体定义、函数和宏定义;
11)实用网络库
http 和 evdns:是基于 libevent 实现的 http 服务器和异步 dns 查询库;
四:event结构知识
下面着重看下event结构体,这是libevent核心结构
struct event { TAILQ_ENTRY(event) ev_active_next; TAILQ_ENTRY(event) ev_next; /* for managing timeouts */ union { TAILQ_ENTRY(event) ev_next_with_common_timeout; int min_heap_idx; } ev_timeout_pos; evutil_socket_t ev_fd; struct event_base *ev_base; union { /* used for io events */ struct { TAILQ_ENTRY(event) ev_io_next; struct timeval ev_timeout; } ev_io; /* used by signal events */ struct { TAILQ_ENTRY(event) ev_signal_next; short ev_ncalls; /* Allows deletes in callback */ short *ev_pncalls; } ev_signal; } _ev; short ev_events; short ev_res; /* result passed to event callback */ short ev_flags; ev_uint8_t ev_pri; /* smaller numbers are higher priority */ ev_uint8_t ev_closure; struct timeval ev_timeout; /* allows us to adopt for different types of events */ void (*ev_callback)(evutil_socket_t, short, void *arg); void *ev_arg; };
ev_active_next: 表示就绪状态的事件链表指针,当关注的事件就绪后,会把
对应的event放入active的队列里。表示该事件在active队列里的位置
ev_next:表示所有事件队列链表的指针。表示该事件在所有时间列表的位置。
ev_timeout_pos:用于管理超时
ev_fd:event绑定的socket描述符
ev_events:
event关注的事件类型,它可以是以下3种类型:
I/O事件: EV_WRITE和EV_READ
定时事件: EV_TIMEOUT
信号: EV_SIGNAL
辅助选项: EV_PERSIST,表明是一个永久事件
Libevent中的定义为:
#define EV_TIMEOUT 0x01
#define EV_READ 0x02
#define EV_WRITE 0x04
#define EV_SIGNAL 0x08
#define EV_PERSIST 0x10 /* Persistant event */
ev_res:记录了当前激活事件的类型;
ev_flags: libevent 用于标记 event 信息的字段,表明其当前的状态,可能的值有:
#define EVLIST_TIMEOUT 0x01 // event在time堆中
#define EVLIST_INSERTED 0x02 // event在已注册事件链表中
#define EVLIST_SIGNAL 0x04 // 未见使用
#define EVLIST_ACTIVE 0x08 // event在激活链表中
#define EVLIST_INTERNAL 0x10 // 内部使用标记
#define EVLIST_INIT 0x80 // event 已被初始化
ev_pri:当前事件的优先级
ev_timeout:超时时间设置
ev_callback:该事件对应的回调函数,和cb类型一样
ev_arg:回调函数用到参数
ev_ncalls:事件就绪执行时,调用 ev_callback 的次数,通常为 1;
ev_pncalls:指针,通常指向 ev_ncalls 或者为 NULL;
五:libevent对于event的管理和使用
对于event使用流程之前有讲过,需要设置event的属性和
回调函数,然后将其加入event队列里。设置event属性和回调函数
的api如下
void event_set(struct event *ev, evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg) { int r; r = event_assign(ev, current_base, fd, events, callback, arg); EVUTIL_ASSERT(r == 0); }
ev:表示event指针
fd:event要关注的socket fd
events:event关注的事件类型(读写I/O,信号,时间事件等)
callback:event就绪后会调用的回调函数
arg:调用回调函数时,函数的参数
该函数内部调用了event_assign完成设置
int event_assign(struct event *ev, struct event_base *base, evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg) { if (!base) base = current_base; _event_debug_assert_not_added(ev); ev->ev_base = base; ev->ev_callback = callback; ev->ev_arg = arg; ev->ev_fd = fd; ev->ev_events = events; ev->ev_res = 0; ev->ev_flags = EVLIST_INIT; ev->ev_ncalls = 0; ev->ev_pncalls = NULL; if (events & EV_SIGNAL) { if ((events & (EV_READ|EV_WRITE)) != 0) { event_warnx("%s: EV_SIGNAL is not compatible with " "EV_READ or EV_WRITE", __func__); return -1; }
//对于信号设置终止信号 ev->ev_closure = EV_CLOSURE_SIGNAL; } else { if (events & EV_PERSIST) { evutil_timerclear(&ev->ev_io_timeout);
//永久事件 ev->ev_closure = EV_CLOSURE_PERSIST; } else { ev->ev_closure = EV_CLOSURE_NONE; } } min_heap_elem_init(ev); if (base != NULL) { /* by default, we put new events into the middle priority */ ev->ev_pri = base->nactivequeues / 2; } _event_debug_note_setup(ev); return 0; }
设置好event属性和回调函数后,需要将event设置到指定的event_base中,
因为有可能存在很多event_base。调用如下函数
int event_base_set(struct event_base *base, struct event *ev) { /* Only innocent events may be assigned to a different base */ if (ev->ev_flags != EVLIST_INIT) return (-1); _event_debug_assert_is_setup(ev); ev->ev_base = base; ev->ev_pri = base->nactivequeues/2; return (0); }
该函数设置了优先级和隶属于哪个base
另外还有一个设置优先级的函数
int event_priority_set(struct event *ev, int pri) 设置event ev的优先级,没什么可说的,注意的一点就是:当ev正处于就绪状态 时,不能设置,返回-1
六:event_base结构分析和使用
event_base结构如下
struct event_base { /** Function pointers and other data to describe this event_base\'s * backend. */ const struct eventop *evsel; /** Pointer to backend-specific data. */ void *evbase; /** List of changes to tell backend about at next dispatch. Only used * by the O(1) backends. */ struct event_changelist changelist; /** Function pointers used to describe the backend that this event_base * uses for signals */ const struct eventop *evsigsel; /** Data to implement the common signal handelr code. */ struct evsig_info sig; /** Number of virtual events */ int virtual_event_count; /** Number of total events added to this event_base */ int event_count; /** Number of total events active in this event_base */ int event_count_active; /** Set if we should terminate the loop once we\'re done processing * events. */ int event_gotterm; /** Set if we should terminate the loop immediately */ int event_break; /** Set if we should start a new instance of the loop immediately. */ int event_continue; /** The currently running priority of events */ int event_running_priority; /** Set if we\'re running the event_base_loop function, to prevent * reentrant invocation. */ int running_loop; /* Active event management. */ /** An array of nactivequeues queues for active events (ones that * have triggered, and whose callbacks need to be called). Low * priority numbers are more important, and stall higher ones. */ struct event_list *activequeues; /** The length of the activequeues array */ int nactivequeues; /* common timeout logic */ /** An array of common_timeout_list* for all of the common timeout * values we know. */ struct common_timeout_list **common_timeout_queues; /** The number of entries used in common_timeout_queues */ int n_common_timeouts; /** The total size of common_timeout_queues. */ int n_common_timeouts_allocated; /** List of defered_cb that are active. We run these after the active * events. */ struct deferred_cb_queue defer_queue; /** Mapping from file descriptors to enabled (added) events */ struct event_io_map io; /** Mapping from signal numbers to enabled (added) events. */ struct event_signal_map sigmap; /** All events that have been enabled (added) in this event_base */ struct event_list eventqueue; /** Stored timeval; used to detect when time is running backwards. */ struct timeval event_tv; /** Priority queue of events with timeouts. */ struct min_heap timeheap; /** Stored timeval: used to avoid calling gettimeofday/clock_gettime * too often. */ struct timeval tv_cache; #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) /** Difference between internal time (maybe from clock_gettime) and * gettimeofday. */ struct timeval tv_clock_diff; /** Second in which we last updated tv_clock_diff, in monotonic time. */ time_t last_updated_clock_diff; #endif #ifndef _EVENT_DISABLE_THREAD_SUPPORT /* threading support */ /** The thread currently running the event_loop for this base */ unsigned long th_owner_id; /** A lock to prevent conflicting accesses to this event_base */ void *th_base_lock; /** The event whose callback is executing right now */ struct event *current_event; /** A condition that gets signalled when we\'re done processing an * event with waiters on it. */ void *current_event_cond; /** Number of threads blocking on current_event_cond. */ int current_event_waiters; #endif #ifdef WIN32 /** IOCP support structure, if IOCP is enabled. */ struct event_iocp_port *iocp; #endif /** Flags that this base was configured with */ enum event_base_config_flag flags; /* Notify main thread to wake up break, etc. */ /** True if the base already has a pending notify, and we don\'t need * to add any more. */ int is_notify_pending; /** A socketpair used by some th_notify functions to wake up the main * thread. */ evutil_socket_t th_notify_fd[2]; /** An event used by some th_notify functions to wake up the main * thread. */ struct event th_notify; /** A function used to wake up the main thread from another thread. */ int (*th_notify_fn)(struct event_base *base); };
evsel:eventop类型的指针,针对不同的模型封装了同一套操作
evbase: 不同模型开辟的数据空间,放到event_base里。
evbase和evsel配套使用,eventop结构如下
struct eventop { /** The name of this backend. */ const char *name; /** Function to set up an event_base to use this backend. It should * create a new structure holding whatever information is needed to * run the backend, and return it. The returned pointer will get * stored by event_init into the event_base.evbase field. On failure, * this function should return NULL. */ void *(*init)(struct event_base *); /** Enable reading/writing on a given fd or signal. \'events\' will be * the events that we\'re trying to enable: one or more of EV_READ, * EV_WRITE, EV_SIGNAL, and EV_ET. \'old\' will be those events that * were enabled on this fd previously. \'fdinfo\' will be a structure * associated with the fd by the evmap; its size is defined by the * fdinfo field below. It will be set to 0 the first time the fd is * added. The function should return 0 on success and -1 on error. */ int (*add)(struct event_base *, evutil_socket_t fd, short old, short events, void *fdinfo); /** As "add", except \'events\' contains the events we mean to disable. */ int (*del)(struct event_base *, evutil_socket_t fd, short old, short events, void *fdinfo); /** Function to implement the core of an event loop. It must see which added events are ready, and cause event_active to be called for each active event (usually via event_io_active or such). It should return 0 on success and -1 on error. */ int (*dispatch)(struct event_base *, struct timeval *); /** Function to clean up and free our data from the event_base. */ void (*dealloc)(struct event_base *); /** Flag: set if we need to reinitialize the event base after we fork. */ int need_reinit; /** Bit-array of supported event_method_features that this backend can * provide. */ enum event_method_feature features; /** Length of the extra information we should record for each fd that has one or more active events. This information is recorded as part of the evmap entry for each fd, and passed as an argument to the add and del functions above. */ size_t fdinfo_len; };
eventop封装了epoll, select 等不同网络模型的init,add,deldispatch等回调函数。
changelist:通知后端改变的列表。
evsigsel:告诉后台 eventbase用于处理signal事件的函数指针
event_count:eventbase中总共的event数量
event_count_active: eventbase中激活的event数量
event_gotterm:这个参数设置后,一旦我们对事件做了处理,就要终止循环。
event_break:立刻结束循环
event_continue:立刻开启一个新的循环实例
event_running_priority:当前事件队列的优先级。
activequeues:激活的事件队列,priority数字小的先触发。
struct event_io_map io: 用于管理io事件的描述符
struct event_signal_map sigmap: 用于管理signal的描述符
eventqueue:所有被加入event_base的事件组成的队列
event_tv:后台记录运行的时间
timeheap:用小根堆管理超时事件队列
其他的参数不是很了解,以后用到了再琢磨。
libevent提供如下两个函数可以生成eventbase实例
event_init(void) { struct event_base *base = event_base_new_with_config(NULL); if (base == NULL) { event_errx(1, "%s: Unable to construct event_base", __func__); return NULL; } current_base = base; return (base); } struct event_base * event_base_new(void) { struct event_base *base = NULL; struct event_config *cfg = event_config_new(); if (cfg) { base = event_base_new_with_config(cfg); event_config_free(cfg); } return base; }
到此为止基本的结构介绍完了。
七libevent事件添加/删除/初始化/派发接口分析
1 event_base初始化和模型初始化
先看下初始化,实际上初始化是在event_base_new_with_config函数中完成的。
struct event_base * event_base_new_with_config(const struct event_config *cfg) { ...
base->evsel = eventops[i]; base->evbase = base->evsel->init(base); ... }
event_init和eventbase_new都会调用event_base_new_with_config这个函数.
而base->evsel是不同模型的指针,进而实现调用不同模型的init
2 事件添加注册函数
int event_add(struct event *ev, const struct timeval *tv) { int res; if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { event_warnx("%s: event has no event_base set.", __func__); return -1; } EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); res = event_add_internal(ev, tv, 0); EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); return (res); }
防止多线程访问出错,加了锁,并且调用了
static inline int event_add_internal(struct event *ev, const struct timeval *tv, int tv_is_absolute) { struct event_base *base = ev->ev_base; int res = 0; int notify = 0;
... /* * 新的timer事件,调用timer heap接口在堆上预留一个位置
*向系统I/O机制注册可能会失败,而当在堆上预留成功后,
* 定时事件的添加将肯定不会失败;
*/ if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) { if (min_heap_reserve(&base->timeheap, 1 + min_heap_size(&base->timeheap)) == -1) return (-1); /* ENOMEM == errno */ } //根据不同的事件(IO,信号,超时事件等将fd放入不同的map if ((ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)) && !(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE))) { if (ev->ev_events & (EV_READ|EV_WRITE)) res = evmap_io_add(base, ev->ev_fd, ev); else if (ev->ev_events & EV_SIGNAL) res = evmap_signal_add(base, (int)ev->ev_fd, ev); if (res != -1)
//将event放入事件队列 event_queue_insert(base, ev, EVLIST_INSERTED); if (res == 1) { /* evmap says we need to notify the main thread. */ notify = 1;以上是关于浅析libevent的主要内容,如果未能解决你的问题,请参考以下文章
flinkFlink 1.12.2 源码浅析 : StreamTask 浅析