Some facts about topological sort
Posted Simple & Naive
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Some facts about topological sort相关的知识,希望对你有一定的参考价值。
Definition: a topological sort of a DAG G is a sort such that for all edge (i,j) in G, i precedes j.
Then we have following corollaries:
- A sort is a topological sort of a DAG G iff for all i, j such that there is a path from i to j, i precedes j in the sort.
- A sort is a topological sort of a DAG G iff for all i, j, if i precedes j, then there is no path from j to i.
A Lemma:
- If in a DAG G, for i, j of G, there is not path from i to j and from j to i, then there must be a topological sort of G with i preceding j.
Proof:
Suppose there is a toplogical sort with j preceding i, then with the following procedure:
For every k between j and i, with the one nearest to j processed first:
If there is a path from k to i, then move k right before j
Move i right before j
We can derive a topological order with i preceding j without breaking the validity of the order. The reason is that, since k is between j and i, then there is no path from k to j and no path from i to k. If there is a path from k to i, then there must be no path from j to k (because otherwise there would be a path from j to i). Then k can be moved before j without breaking the validity of the toplogical order. If there has been other vertices between j and i which are moved before j, then moving k right before j would keep the orginal preceding relationship between them. If there are other vertices before k that are not moved, for any such k‘, since there is no path from k‘ to i, then there is no path from k‘ to k (because otherwise there will be a path from k‘ to i), then k can also be moved in front of k‘ without breaking the validity of the toplogical sort. Since each step of the above procedure keeps the validity of the toplogical sort, we have derived a valid topological sort with this procedure.
以上是关于Some facts about topological sort的主要内容,如果未能解决你的问题,请参考以下文章
[List] Some Interesting Problems about Games
Some tips about argument in python
ST:(homework 3)Some problems about Graph Coverage
some try on func swap about & and *
Some features we need to keep in mind about the implementation of QuickSort algorithm