延时队列常用实现详解
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了延时队列常用实现详解相关的知识,希望对你有一定的参考价值。
参考技术A 队列是一种线性表,内部的元素是有序的,具有先进先出的特性。
延时队列,顾名思义,它是一个队列,但更重要的是具有延时的特性,与普通队列的先进先出不同,延时队列可以指定队列中的消息在某个时间点被消费。
DelayQueue是无界的延时阻塞队列,内部是使用优先级队列PriorityQueue实现的,其是按时间来定优先级的延时阻塞队列,只有在延迟期满时才能从队列中提取元素,先过期的元素会在队首,每次从队列里取出来都是最先要过期的元素, 当执行队列take操作元素未过期时会阻塞当前线程到元素过期为止 ;PriorityQueue是通过二叉小顶堆实现, 其任意一个非叶子节点的权值,都不大于其左右子节点的权值。
示例
队列中的元素必须实现Delayed接口
redis key的过期事件是通过redis 2.8.0之后版本提供的订阅发布功能(pub/sub)下发的,当key过期后系统自动Pub,应用程序只需订阅(sub)该事件即可。
实现步骤
示例
存在的问题
key的失效通知无法保证时效性。redis过期策略有一下三种:
默认情况下,Redis 使用的是 惰性删除 + 定期删除 的策略;每隔一段时间(可通过hz参数设置每秒执行的次数),Redis 会分别从各个库随机选取部分测试设置了过期时间的 Key,判断它们是否过期,过期则删除;如果 key 已过期,但没有被定期删除,由于惰性删除策略,在下次请求获取该数据时会将该数据删除。
可通过如下方式提高时效性
redis zset 结构是一个有序集合,每个元素都会关联一个 double 类型的分数,通过分数来为集合中的成员进行从小到大的排序;有序集合的成员是唯一的,但分数(score)却可以重复。
实现思路
将任务id作为member,到期时间作为score存入到zset中,然后不断轮询获取第一个元素,判断其是否过期,过期后删除并执行任务即可。
也可以通过lua脚本将 zrangebyscore 和 zrem 操作变成原子操作,避免了多线程时同一个me mber多次zrem。
存在的问题
RabbitMQ本身没有直接支持延迟队列功能,但是可以通过ttl及dlx(Dead Letter Exchanges)特性模拟出延迟队列的功能。
绑定在死信交换机上的队列。RabbitMQ的Queue(队列)可以配置两个参数x-dead-letter-exchange(死信交换机)和x-dead-letter-routing-key(指定routing-key发送,可选),当消息在一个队列中变成死信 (dead message) 之后,按照这两个参数可以将消息重新路由到另一个DLX Exchange(死信交换机),让消息重新被消费。
队列出现Dead Letter的情况有:
RabbitMQ可以对消息和队列设置TTL,为队列设置时,队列中所有消息都有相同的过期时间;对消息进行单独设置,每条消息过期时间可以不同;如果同时设置了队列的ttl和消息的ttl以两者之间TTL较小的那个数值为准。消息超过设置的ttl值未被消费,将会变为死信,消费者将无法再收到该消息。
ttl消息按照入发送顺序排列在队列中,且rabbitMQ只会判断队列头消息是否失效,失效后才会加入到死信队列中,如果发送多个过期时间不一致的消息,有可能后面的消息已经过期了,但队列头消息没有过期,导致其他消息不能及时加入到死信队列被消费。
针对上述的问题,可以使用 rabbitmq_delayed_message_exchang 插件来解决。
安装该插件后会生成新的Exchange类型 x-delayed-message ,该类型消息支持延迟投递机制,接收到消息后并未立即将消息投递至目标队列中,而是存储在 mnesia (一个分布式数据系统)表中,检测消息延迟时间(通过消息头的x-delay指定),如达到可投递时间时并将其通过 x-delayed-type 类型标记的交换机类型投递至目标队列。
插件的安装
使用示例
插件的局限
时间轮的应用广泛,包括linux内核的调度、zookeeper、netty、kafka、xxl-job、quartz等均有使用时间轮。
图中的圆盘可以看作是钟表的刻度。比如一圈round长度为24秒,刻度数为8,那么每一个刻度表示3秒。那么时间精度就是3秒。每个刻度为一个bucket(实际上就是TimerTaskList),TimerTaskList是环形双向链表,在其中链表项TimeTaskEntry封装了真正的定时任务TimerTask。TimerTaskList使用expiration字段记录了整个TimerTaskList的超时时间。TimeTaskEntry中的expirationMs字段记录了超时时间戳,timerTask字段指向了对应的TimerTask任务;根据每个TimerTaskEntry的过期时间和当前时间轮的时间,选择一个合适的bucket,把这个TimerTaskEntry对象放进去;对于延迟超过时间轮所能表示的范围有两种处理方式,一是通过增加一个字段-轮数,Netty 就是这样实现的;二是多层时间轮,Kakfa 是这样实现的。
下面介绍下kafka的多层时间轮,层数越高时间跨度越大。
每个使用到的TimerTaskList都会加入到DelayQueue中,DelayQueue会根据TimerTaskList对应的超时时间expiration来排序,最短expiration的TimerTaskList会被排在DelayQueue的队头,通过一个线程获取到DelayQueue中的超时的任务列表TimerTaskList之后,既可以根据TimerTaskList的expiration来推进时间轮的时间,也可以就获取到的TimerTaskList执行相应的操作,TimerTaskEntry该执行过期操作的就执行过期操作,该降级时间轮的就降级时间轮。
假设现在有一个任务在445ms后执行,默认情况下,各个层级的时间轮的时间格个数为20,第一层时间轮每一个时间格跨度为1ms,整个时间轮跨度为20ms,跨度不够。第二层时间轮每一个时间格跨度为20ms,整个时间轮跨度为400ms,跨度依然不够,第三层时间轮每一个时间格跨度为400ms,整个时间轮跨度为8000ms,现在跨度够了,此任务就放在第三层时间轮的第一个时间格对应的TimerTaskList,等待被执行,此TimerTaskList到期时间是400ms,随着时间的流逝,当此TimerTaskList到期时,距离该任务到期时间还有45ms,不能执行该任务,将重新提交到时间轮,此时第一层时间轮跨度依然不够,不能执行任务,第二层时间轮时间格跨度为20,整个世间轮跨度为400,跨度足够,放在第三个时间格等待执行,如此往复几次,高层时间轮最终会慢慢移动到低层时间轮上,最终任务到期执行。
rocketmq实现延时队列
参考技术A 说明:rocketmq实现的延时队列只支持特定的延时时间段,1s,5s,10s,...2h,不能支持任意时间段的延时具体实现:rocketmq发送延时消息时先把消息按照延迟时间段发送到指定的队列中(rocketmq把每种延迟时间段的消息都存放到同一个队列中)然后通过一个定时器进行轮训这些队列,查看消息是否到期,如果到期就把这个消息发送到指定topic的队列中,这样的好处是同一队列中的消息延时时间是一致的,还有一个好处是这个队列中的消息时按照消息到期时间进行递增排序的,说的简单直白就是队列中消息越靠前的到期时间越早
流程图
源码分析:
如果想要深入了解的可以看一下ScheduleMessageService这个类
delayLevelTable定义了延迟级别和延迟时间的对应关系,offsetTable存放延延迟级别对应的队列消费的offset
使用timer定时器启动了一个定时任务,把每个扫描队列封装成一个任务,然后加入到timer中
每个扫描任务主要是把队列中所有到期的消息都拿出来,并发送到指定的topic下,并把延迟队列中的消息删除
总结
优点:设计简单,把所有相同延迟时间的消息都先放到一个队列中,定时扫描,可以保证消息消费的有序性
缺点:定时器采用了timer,timer是单线程运行,如果延迟消息数量很大的情况下,可能单线程处理不过来,造成消息到期后也没有发送出去的情况
改进点:可以在每个延迟队列上各采用一个timer,或者使用timer进行扫描,加一个线程池对消息进行处理,这样可以提供效率
以上是关于延时队列常用实现详解的主要内容,如果未能解决你的问题,请参考以下文章
精华推荐 |算法数据结构专题「延时队列算法」史上非常详细分析和介绍如何通过时间轮(TimingWheel)实现延时队列的原理指南