从图像边缘到物体轮廓
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了从图像边缘到物体轮廓相关的知识,希望对你有一定的参考价值。
参考技术A 上一篇已经讲解了很多算子用来检测边缘,其中用得最多的是canny边缘检测。只有边缘还不够,有很多时候我们还需要获得图片上的某物体轮廓。轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。
Opencv提供了一个函数findContours()用于发现轮廓,它有三个参数,第一个是输入图像,第二个是轮廓检索模式,第三个是轮廓近似方法。
findContours()的返回值有三个,第一个是图像,第二个是轮廓,第三个是(轮廓的)层析结构。最常用的是第二个返回值。
轮廓(第二个返回值)是一个Python列表,其中储存这图像中所有轮廓。每一个轮廓都是一个Numpy数组,包含对象边界点(x,y)的坐标。
Opencv提供了一个函数drawContours()用于绘制轮廓。
轮廓特征计算的结果并不等同于像素点的个数,而是根据几何方法算出来的,所以有小数。
参数2表示轮廓是否封闭
形状的外接矩形有两种,如下图,绿色的叫外接矩形,表示不考虑旋转并且能包含整个轮廓的矩形。蓝色的叫最小外接矩,考虑了旋转。
其中np.int0(x)是把x取整的操作,比如377.93就会变成377,也可以用x.astype(np.int)
外接圆跟外接矩形一样,找到一个能包围物体的最小圆:
我们可以用得到的轮廓拟合出一个椭圆:
第一个参数是某一轮廓。第二个参数是像素点坐标。第三个参数如果为True则输出该像素点到轮廓最近距离;如果为False,则输出为正表示在轮廓内,0为轮廓上,负为轮廓外。
深度好文Python图像处理之目标物体轮廓提取
1 引言
目标物体的边缘对图像识别和计算机分析十分有用。边缘可以勾画出目标物体,使观察者一目了然;边缘蕴含了丰富的内在信息(如方向、形状等),是图像识别中抽取图像特征的重要属性。轮廓提取是边界分割中非常重要的一种处理,同时也是图像处理的经典难题,轮廓提取和轮廓跟踪的目的都是获得图像的外部轮廓特征。
2 原理
二值图像的轮廓提取的原理非常简单,就是掏空内部点:如果原图中有一点为黑,且它的8个相邻点皆为黑色,则将该点删除。对于非二值图像,需要先进行二值化处理。轮廓提取的方法有很多,在这里我们介绍一种最基本、最简单容易实现的算法。算法原理如下:
- 在进行轮廓提取时,使用一个一维数组,用来记录处理的像素点的周围8邻域的信息
- 若8个邻域的像素点的灰度值和中心点的灰度值相同,则认为该点在物体的内部,可以删除;
- 否则,认为该点在图像的边缘,需要保留。
- 依次处理图像中每一个像素,则最后留下来的就是图像的轮廓。
3 Python实现
- 读入彩色图像
img_name = "./20210808/sample3.png"
img = cv2.imread(img_name)
结果如下:
2) 彩色图像灰度化
gray_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
结果如下:
3)二值化
def get_binary_img(img):
# gray img to bin image
bin_img = np.zeros(shape=(img.shape), dtype=np.uint8)
h = img.shape[0]
w = img.shape[1]
for i in range(h):
for j in range(w):
bin_img[i][j] = 255 if img[i][j] > 127 else 0
return bin_img
# 调用
bin_img = get_binary_img(gray_img)
结果如下:
4)提取轮廓
参考上述原理,进行实现,代码如下:
def get_contour(bin_img):
# get contour
contour_img = np.zeros(shape=(bin_img.shape),dtype=np.uint8)
contour_img += 255
h = bin_img.shape[0]
w = bin_img.shape[1]
for i in range(1,h-1):
for j in range(1,w-1):
if(bin_img[i][j]==0):
contour_img[i][j] = 0
sum = 0
sum += bin_img[i - 1][j + 1]
sum += bin_img[i][j + 1]
sum += bin_img[i + 1][j + 1]
sum += bin_img[i - 1][j]
sum += bin_img[i + 1][j]
sum += bin_img[i - 1][j - 1]
sum += bin_img[i][j - 1]
sum += bin_img[i + 1][j - 1]
if sum == 0:
contour_img[i][j] = 255
return contour_img
# 调用
contour_img = get_contour(bin_img)
结果如下:
4 总结
通过上述简单步骤,我们实现了物体轮廓提取,相应的处理效果如下:
上图中 左侧为原图,右侧为我们提取的物体轮廓图。
以上是关于从图像边缘到物体轮廓的主要内容,如果未能解决你的问题,请参考以下文章
OpenCV - 图像二值化处理 腐蚀膨胀 边缘检测 轮廓识别
二进制阈值图像-> 应用精明的边缘检测-> findContour(),这会改善轮廓检测吗?