从图像边缘到物体轮廓

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了从图像边缘到物体轮廓相关的知识,希望对你有一定的参考价值。

参考技术A 上一篇已经讲解了很多算子用来检测边缘,其中用得最多的是canny边缘检测。只有边缘还不够,有很多时候我们还需要获得图片上的某物体轮廓。
轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。

Opencv提供了一个函数findContours()用于发现轮廓,它有三个参数,第一个是输入图像,第二个是轮廓检索模式,第三个是轮廓近似方法。

findContours()的返回值有三个,第一个是图像,第二个是轮廓,第三个是(轮廓的)层析结构。最常用的是第二个返回值。
轮廓(第二个返回值)是一个Python列表,其中储存这图像中所有轮廓。每一个轮廓都是一个Numpy数组,包含对象边界点(x,y)的坐标。

Opencv提供了一个函数drawContours()用于绘制轮廓。

轮廓特征计算的结果并不等同于像素点的个数,而是根据几何方法算出来的,所以有小数。

参数2表示轮廓是否封闭

形状的外接矩形有两种,如下图,绿色的叫外接矩形,表示不考虑旋转并且能包含整个轮廓的矩形。蓝色的叫最小外接矩,考虑了旋转。

其中np.int0(x)是把x取整的操作,比如377.93就会变成377,也可以用x.astype(np.int)

外接圆跟外接矩形一样,找到一个能包围物体的最小圆:

我们可以用得到的轮廓拟合出一个椭圆:

第一个参数是某一轮廓。第二个参数是像素点坐标。第三个参数如果为True则输出该像素点到轮廓最近距离;如果为False,则输出为正表示在轮廓内,0为轮廓上,负为轮廓外。

深度好文Python图像处理之目标物体轮廓提取

1 引言

目标物体的边缘对图像识别和计算机分析十分有用。边缘可以勾画出目标物体,使观察者一目了然;边缘蕴含了丰富的内在信息(如方向、形状等),是图像识别中抽取图像特征的重要属性。轮廓提取是边界分割中非常重要的一种处理,同时也是图像处理的经典难题,轮廓提取和轮廓跟踪的目的都是获得图像的外部轮廓特征。

2 原理

二值图像的轮廓提取的原理非常简单,就是掏空内部点:如果原图中有一点为黑,且它的8个相邻点皆为黑色,则将该点删除。对于非二值图像,需要先进行二值化处理。轮廓提取的方法有很多,在这里我们介绍一种最基本、最简单容易实现的算法。算法原理如下:

  • 在进行轮廓提取时,使用一个一维数组,用来记录处理的像素点的周围8邻域的信息
  • 若8个邻域的像素点的灰度值和中心点的灰度值相同,则认为该点在物体的内部,可以删除;
  • 否则,认为该点在图像的边缘,需要保留。
  • 依次处理图像中每一个像素,则最后留下来的就是图像的轮廓。

3 Python实现

  1. 读入彩色图像
img_name = "./20210808/sample3.png"
img = cv2.imread(img_name)

结果如下:

2) 彩色图像灰度化

gray_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

结果如下:


3)二值化

def get_binary_img(img):
    # gray img to bin image
    bin_img = np.zeros(shape=(img.shape), dtype=np.uint8)
    h = img.shape[0]
    w = img.shape[1]
    for i in range(h):
        for j in range(w):
            bin_img[i][j] = 255 if img[i][j] > 127 else 0
    return bin_img
# 调用
bin_img = get_binary_img(gray_img)

结果如下:

4)提取轮廓
参考上述原理,进行实现,代码如下:

def get_contour(bin_img):
    # get contour
    contour_img = np.zeros(shape=(bin_img.shape),dtype=np.uint8)
    contour_img += 255
    h = bin_img.shape[0]
    w = bin_img.shape[1]
    for i in range(1,h-1):
        for j in range(1,w-1):
            if(bin_img[i][j]==0):
                contour_img[i][j] = 0
                sum = 0
                sum += bin_img[i - 1][j + 1]
                sum += bin_img[i][j + 1]
                sum += bin_img[i + 1][j + 1]
                sum += bin_img[i - 1][j]
                sum += bin_img[i + 1][j]
                sum += bin_img[i - 1][j - 1]
                sum += bin_img[i][j - 1]
                sum += bin_img[i + 1][j - 1]
                if sum ==  0:
                    contour_img[i][j] = 255

    return contour_img
# 调用    
contour_img = get_contour(bin_img)

结果如下:

4 总结

通过上述简单步骤,我们实现了物体轮廓提取,相应的处理效果如下:

上图中 左侧为原图,右侧为我们提取的物体轮廓图。

以上是关于从图像边缘到物体轮廓的主要内容,如果未能解决你的问题,请参考以下文章

计算机视觉OpenCV篇 - 轮廓(寻找/绘制轮廓)

OpenCV-Python:轮廓

OpenCV - 图像二值化处理 腐蚀膨胀 边缘检测 轮廓识别

二进制阈值图像-> 应用精明的边缘检测-> findContour(),这会改善轮廓检测吗?

youcans 的 OpenCV 例程200篇195.绘制图像轮廓(cv.drawContours)

youcans 的 OpenCV 例程200篇194.寻找图像轮廓(cv.findContours)