介绍一下“曼哈顿计划”?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了介绍一下“曼哈顿计划”?相关的知识,希望对你有一定的参考价值。

  曼哈顿计划(Manhattan Project)

  美国陆军部于1942年6月开始实施的利用核裂变反应来研制原子弹的计划,亦称曼哈顿计划。为了先于纳粹德国制造出原子弹,该工程集中了当时西方国家(除纳粹德国外)(包括美籍华人核物理学家吴健雄女士等)最优秀的核科学家,动员了10万多人参加这一工程,历时3年,耗资20亿美元,于1945年7月16日成功地进行了世界上第一次核爆炸,并按计划制造出两颗实用的原子弹。整个工程取得圆满成功。在工程执行过程中,负责人L.R.格罗夫斯和R.奥本海默应用了系统工程的思路和方法,大大缩短了工程所耗时间。这一工程的成功促进了第二次世界大战后系统工程的发展。

  1942年初,美国科学家虽然对原子弹的机制、应该努力的方向,甚至费用和时间都有了大致的构想,但核研究的庞大工程已经超过了科学研究机构的能力。当时美国经济已经转向战争,没有一家工业公司能在短期内完成有关生产设施的建设。美国核研究的负责人之一布什认为,只有军队以最高优先权,才能在战争结束前生产出核原料来。1942年3月9日,他在给罗斯福总统的报告中,强调了原子弹的光明前景,提出把全部的研制和生产管理移交给军队。6月17日,布什给罗斯福准备了一份将核计划全部交给军队领导执行的详细报告。罗斯福立即批复了布什的报告。

  到1941年12月6日,美国正式制定了代号为“曼哈顿”的绝密计划。 罗斯福总统赋予这一计划以“高于一切行动的特别优先权”。 “曼哈顿”计划规模大得惊人。由于当时还不知道分裂铀235的3种方法哪种最好,只得用3种方法同时进行裂变工作。这项复杂的工程成了美国科学的熔炉,在 “曼哈顿”工程管理区内,汇集了以奥本海默为首的一大批来自世界各国的科学家。科学家人数之多简直难以想象,在某些部门,带博士头衔的人甚至比一般工作人员还要多,而且其中不乏诺贝尔奖得主。“曼哈顿”工程在顶峰时期曾经起用了53.9万人,总耗资高达25亿美元。这是在此之前任何一次武其实验所无法比拟的。

  在参谋长联席会议主席马歇尔的支持下,美国军方同意按原S?委员会(负责铀研究的一个机构)的建议,开始建设4种分别采用不同方法的铀同位素分离工厂和其他的研制、生产基地。军队把整个计划取名为“代用材料发展实验室”,指派美国军事工程部的马歇尔上校负责全部行动。

  由于马歇尔上校循规蹈矩,与科学顾问们又合不来,使研究计划优先权的升级和气体分离工厂地址的选择拖延了两个月。9月,政府战时办公室和军队高层领导决定,领导修建美国国防部大楼五角大楼的格罗夫斯上校接替马歇尔上校。格罗夫斯在赴任之前,被提升为准将。

  格罗夫斯在上任后不到48小时内就成功地把计划的优先权升为最高级,并选定田纳西州的橡树岭作为铀同位素分离工厂基地。因为马歇尔上校的总办公室最初将设在纽约城,他们决定把新管区的名称命名为“曼哈顿”。于是,“曼哈顿工程区(或简称为曼工区)”就这样诞生了。美国整个核研究计划不久后取名为 “曼哈顿计划”。

  曼哈顿计划的最终目标是赶在战争以前造出原子弹。虽然在这个计划以前,S?执行委员会就肯定了它的可行性,但要实现这一新的爆炸,还有大量的理论和工程技术问题需要解决。在劳伦斯、康普顿等人的推荐下,格罗夫斯请奥本海默负责这一工作。为了使原子弹研究计划能够顺利完成,根据奥本海默的建议,军事当局决定建立一个新的快中子反应和原子弹结构研究基地,这就是后来闻名于世的洛斯阿拉莫斯实验室。奥本海默凭着他的才能与智慧,以及他对于原子弹的深刻洞察力,被任命为洛斯阿拉莫斯实验室主任。正是由于这样一个至关重要的任命,才使他在日后赢得了美国“原子弹之父”的称号。

  奥本海默开始时对困难估计不足,认为只要6名物理学家和100多名工程技术人员就足够了。但实验室到1945年时,发展到拥有2000多名文职研究人员和3000多名军事人员,其中包括1000多名科学家。

  鉴于大多数科学家都反对实验室的军事化,格罗夫斯同意加州大学成为洛斯阿拉莫斯名义上的管理单位和合同保证单位,基地的军队负责实验室建设、后勤供应和安全保障。这就保证了实验室内部的自由学术讨论。奥本海默鼓励科学家们大胆地讨论原子弹的有关科学问题,提出即使看门人的意见,也会对原子弹的成功有一定的帮助。奥本海默注意倾听任何人的意见,掌握着整个实验进程。有些参与核研究的物理学家后来回忆说,他们自己甚至都不如奥本海默清楚自己工作的细节和进展。在很多问题上,都是由于奥本海默的决断才取得突破,保证了原子弹研制时间表的执行。奥本海默在科学家、普通职工和政府官员中的威望越来越高。洛斯阿拉莫斯素有“诺贝尔奖获得者集中营”之誉,人们称奥本海默为这个集中营的“营长”。奥本海默没有获过诺贝尔奖,却拥有如此高的个人威望,他的组织才能与人格魅力由此可见一斑。

  在“曼哈顿工程区”工作的15万人当中,只有12个人知道全盘的计划。其实,全体人员中很少有人知道他们是在从事制造原子弹的工作。例如,洛斯阿拉莫斯计算中心长时期内进行复杂的计算,但大部分工作人员不了解这些工作的实际意义。由于他们不知道工作目的,所以也就不可能使他们对工作发生真正的兴趣。后来,有一个年轻的说明了他们是在做什么样的工作。此后,这里的工作达到了高潮,并且有许多工作人员自愿留下来加班加点。经过全体人员的艰苦努力,原子弹的许多技术与工程问题得到解决。1945年7月15日凌晨5点30分,世界上第一颗原子弹“胖子”试验成功。8月6日和9日,美国分别在日本的广岛和长崎投下了原子弹。随着苏联军队出兵我国东北,日本天皇于14日宣布无条件投降,第二次世界大战结束了。

  曼哈顿计划不仅造出了原子弹,也留下了14亿美元的财产,包括一个具有9000人的洛斯阿拉莫斯核武器实验室;一个具有36000人、价值9亿美元的橡树岭铀材料生产工厂和附带的一个实验室;一个具有17000人、价值3亿多美元的汉福特钚材料生产工厂,以及分布在伯克利和芝加哥等地的实验室。

  1946年7月,在原子弹研制成功一周年之际,美国参、众两院经过激烈的争论,通过了一项由参议员麦克马洪提出的议案。杜鲁门于8月1日签署命令,提案开始正式生效,这就是《1946年原子能法令》。它标志着美国战时核计划的结束和新的过渡时期的开始,也成为和平时斯整个美国原子能发展的指导纲领。

  《1946年原子能法令》正式生效后,格罗夫斯领导的曼哈顿工程在国会和政府的同意下,继续支撑着整个核计划。当美国新的原子能委员会组成后,杜鲁门决定在1946年的最后一天晚上12点,将原曼哈顿工程的全部财产和权力移交给原子能委员会,从而正式开始了一个新的过渡时期。原子能委员会设有四个部:研究部,它控制一切与原子能有关的研究;生产部,它拥有并控制一切生产裂变材料和原子能的设施,组织核裂变材料的生产;工程部,它指导一切与原子能发展有关的设备和工程;军事应用部,它处理与军备有关的原子能事项。原子能委员会总部也从橡树岭迁到了华盛顿。

  后来,美国政府决定建立国家实验室,其中最著名的有芝加哥附近的阿贡国家实验室和纽约长岛的布鲁克海文国家实验室(BNL)。这两个实验室为高能物理的发展做出了贡献,特别是丁肇中教授,就是于1974年利用布鲁克海文实验室的加速器AGS发现J粒子的,并因此获得诺贝尔物理学奖。

参考资料:http://baike.baidu.com/view/25659.htm

参考技术A 曼哈顿计划(Manhattan Project)

美国陆军部于1942年6月开始实施的利用核裂变反应来研制原子弹的计划,亦称曼哈顿计划。为了先于纳粹德国制造出原子弹,该工程集中了当时西方国家(除纳粹德国外)(包括美籍华人核物理学家吴健雄女士等)最优秀的核科学家,动员了10万多人参加这一工程,历时3年,耗资20亿美元,于1945年7月16日成功地进行了世界上第一次核爆炸,并按计划制造出两颗实用的原子弹。整个工程取得圆满成功。在工程执行过程中,负责人L.R.格罗夫斯和R.奥本海默应用了系统工程的思路和方法,大大缩短了工程所耗时间。这一工程的成功促进了第二次世界大战后系统工程的发展。

1942年初,美国科学家虽然对原子弹的机制、应该努力的方向,甚至费用和时间都有了大致的构想,但核研究的庞大工程已经超过了科学研究机构的能力。当时美国经济已经转向战争,没有一家工业公司能在短期内完成有关生产设施的建设。美国核研究的负责人之一布什认为,只有军队以最高优先权,才能在战争结束前生产出核原料来。1942年3月9日,他在给罗斯福总统的报告中,强调了原子弹的光明前景,提出把全部的研制和生产管理移交给军队。6月17日,布什给罗斯福准备了一份将核计划全部交给军队领导执行的详细报告。罗斯福立即批复了布什的报告。

到1941年12月6日,美国正式制定了代号为“曼哈顿”的绝密计划。 罗斯福总统赋予这一计划以“高于一切行动的特别优先权”。 “曼哈顿”计划规模大得惊人。由于当时还不知道分裂铀235的3种方法哪种最好,只得用3种方法同时进行裂变工作。这项复杂的工程成了美国科学的熔炉,在 “曼哈顿”工程管理区内,汇集了以奥本海默为首的一大批来自世界各国的科学家。科学家人数之多简直难以想象,在某些部门,带博士头衔的人甚至比一般工作人员还要多,而且其中不乏诺贝尔奖得主。“曼哈顿”工程在顶峰时期曾经起用了53.9万人,总耗资高达25亿美元。这是在此之前任何一次武其实验所无法比拟的。

在参谋长联席会议主席马歇尔的支持下,美国军方同意按原S?委员会(负责铀研究的一个机构)的建议,开始建设4种分别采用不同方法的铀同位素分离工厂和其他的研制、生产基地。军队把整个计划取名为“代用材料发展实验室”,指派美国军事工程部的马歇尔上校负责全部行动。

由于马歇尔上校循规蹈矩,与科学顾问们又合不来,使研究计划优先权的升级和气体分离工厂地址的选择拖延了两个月。9月,政府战时办公室和军队高层领导决定,领导修建美国国防部大楼五角大楼的格罗夫斯上校接替马歇尔上校。格罗夫斯在赴任之前,被提升为准将。

格罗夫斯在上任后不到48小时内就成功地把计划的优先权升为最高级,并选定田纳西州的橡树岭作为铀同位素分离工厂基地。因为马歇尔上校的总办公室最初将设在纽约城,他们决定把新管区的名称命名为“曼哈顿”。于是,“曼哈顿工程区(或简称为曼工区)”就这样诞生了。美国整个核研究计划不久后取名为 “曼哈顿计划”。

曼哈顿计划的最终目标是赶在战争以前造出原子弹。虽然在这个计划以前,S?执行委员会就肯定了它的可行性,但要实现这一新的爆炸,还有大量的理论和工程技术问题需要解决。在劳伦斯、康普顿等人的推荐下,格罗夫斯请奥本海默负责这一工作。为了使原子弹研究计划能够顺利完成,根据奥本海默的建议,军事当局决定建立一个新的快中子反应和原子弹结构研究基地,这就是后来闻名于世的洛斯阿拉莫斯实验室。奥本海默凭着他的才能与智慧,以及他对于原子弹的深刻洞察力,被任命为洛斯阿拉莫斯实验室主任。正是由于这样一个至关重要的任命,才使他在日后赢得了美国“原子弹之父”的称号。

奥本海默开始时对困难估计不足,认为只要6名物理学家和100多名工程技术人员就足够了。但实验室到1945年时,发展到拥有2000多名文职研究人员和3000多名军事人员,其中包括1000多名科学家。

鉴于大多数科学家都反对实验室的军事化,格罗夫斯同意加州大学成为洛斯阿拉莫斯名义上的管理单位和合同保证单位,基地的军队负责实验室建设、后勤供应和安全保障。这就保证了实验室内部的自由学术讨论。奥本海默鼓励科学家们大胆地讨论原子弹的有关科学问题,提出即使看门人的意见,也会对原子弹的成功有一定的帮助。奥本海默注意倾听任何人的意见,掌握着整个实验进程。有些参与核研究的物理学家后来回忆说,他们自己甚至都不如奥本海默清楚自己工作的细节和进展。在很多问题上,都是由于奥本海默的决断才取得突破,保证了原子弹研制时间表的执行。奥本海默在科学家、普通职工和政府官员中的威望越来越高。洛斯阿拉莫斯素有“诺贝尔奖获得者集中营”之誉,人们称奥本海默为这个集中营的“营长”。奥本海默没有获过诺贝尔奖,却拥有如此高的个人威望,他的组织才能与人格魅力由此可见一斑。

在“曼哈顿工程区”工作的15万人当中,只有12个人知道全盘的计划。其实,全体人员中很少有人知道他们是在从事制造原子弹的工作。例如,洛斯阿拉莫斯计算中心长时期内进行复杂的计算,但大部分工作人员不了解这些工作的实际意义。由于他们不知道工作目的,所以也就不可能使他们对工作发生真正的兴趣。后来,有一个年轻的说明了他们是在做什么样的工作。此后,这里的工作达到了高潮,并且有许多工作人员自愿留下来加班加点。经过全体人员的艰苦努力,原子弹的许多技术与工程问题得到解决。1945年7月15日凌晨5点30分,世界上第一颗原子弹“胖子”试验成功。8月6日和9日,美国分别在日本的广岛和长崎投下了原子弹。随着苏联军队出兵我国东北,日本天皇于14日宣布无条件投降,第二次世界大战结束了。

曼哈顿计划不仅造出了原子弹,也留下了14亿美元的财产,包括一个具有9000人的洛斯阿拉莫斯核武器实验室;一个具有36000人、价值9亿美元的橡树岭铀材料生产工厂和附带的一个实验室;一个具有17000人、价值3亿多美元的汉福特钚材料生产工厂,以及分布在伯克利和芝加哥等地的实验室。

1946年7月,在原子弹研制成功一周年之际,美国参、众两院经过激烈的争论,通过了一项由参议员麦克马洪提出的议案。杜鲁门于8月1日签署命令,提案开始正式生效,这就是《1946年原子能法令》。它标志着美国战时核计划的结束和新的过渡时期的开始,也成为和平时斯整个美国原子能发展的指导纲领。

《1946年原子能法令》正式生效后,格罗夫斯领导的曼哈顿工程在国会和政府的同意下,继续支撑着整个核计划。当美国新的原子能委员会组成后,杜鲁门决定在1946年的最后一天晚上12点,将原曼哈顿工程的全部财产和权力移交给原子能委员会,从而正式开始了一个新的过渡时期。原子能委员会设有四个部:研究部,它控制一切与原子能有关的研究;生产部,它拥有并控制一切生产裂变材料和原子能的设施,组织核裂变材料的生产;工程部,它指导一切与原子能发展有关的设备和工程;军事应用部,它处理与军备有关的原子能事项。原子能委员会总部也从橡树岭迁到了华盛顿。

后来,美国政府决定建立国家实验室,其中最著名的有芝加哥附近的阿贡国家实验室和纽约长岛的布鲁克海文国家实验室(BNL)。这两个实验室为高能物理的发展做出了贡献,特别是丁肇中教授,就是于1974年利用布鲁克海文实验室的加速器AGS发现J粒子的,并因此获得诺贝尔物理学奖。
参考技术B 曼哈顿计划(Manhattan Project)

美国陆军部于1942年6月开始实施的利用核裂变反应来研制原子弹的计划,亦称曼哈顿计划。为了先于纳粹德国制造出原子弹,该工程集中了当时西方国家(除纳粹德国外)(包括美籍华人核物理学家吴健雄女士等)最优秀的核科学家,动员了10万多人参加这一工程,历时3年,耗资20亿美元,于1945年7月16日成功地进行了世界上第一次核爆炸,并按计划制造出两颗实用的原子弹。整个工程取得圆满成功。在工程执行过程中,负责人L.R.格罗夫斯和R.奥本海默应用了系统工程的思路和方法,大大缩短了工程所耗时间。这一工程的成功促进了第二次世界大战后系统工程的发展。

1942年初,美国科学家虽然对原子弹的机制、应该努力的方向,甚至费用和时间都有了大致的构想,但核研究的庞大工程已经超过了科学研究机构的能力。当时美国经济已经转向战争,没有一家工业公司能在短期内完成有关生产设施的建设。美国核研究的负责人之一布什认为,只有军队以最高优先权,才能在战争结束前生产出核原料来。1942年3月9日,他在给罗斯福总统的报告中,强调了原子弹的光明前景,提出把全部的研制和生产管理移交给军队。6月17日,布什给罗斯福准备了一份将核计划全部交给军队领导执行的详细报告。罗斯福立即批复了布什的报告。

到1941年12月6日,美国正式制定了代号为“曼哈顿”的绝密计划。 罗斯福总统赋予这一计划以“高于一切行动的特别优先权”。 “曼哈顿”计划规模大得惊人。由于当时还不知道分裂铀235的3种方法哪种最好,只得用3种方法同时进行裂变工作。这项复杂的工程成了美国科学的熔炉,在 “曼哈顿”工程管理区内,汇集了以奥本海默为首的一大批来自世界各国的科学家。科学家人数之多简直难以想象,在某些部门,带博士头衔的人甚至比一般工作人员还要多,而且其中不乏诺贝尔奖得主。“曼哈顿”工程在顶峰时期曾经起用了53.9万人,总耗资高达25亿美元。这是在此之前任何一次武其实验所无法比拟的。

在参谋长联席会议主席马歇尔的支持下,美国军方同意按原S?委员会(负责铀研究的一个机构)的建议,开始建设4种分别采用不同方法的铀同位素分离工厂和其他的研制、生产基地。军队把整个计划取名为“代用材料发展实验室”,指派美国军事工程部的马歇尔上校负责全部行动。

由于马歇尔上校循规蹈矩,与科学顾问们又合不来,使研究计划优先权的升级和气体分离工厂地址的选择拖延了两个月。9月,政府战时办公室和军队高层领导决定,领导修建美国国防部大楼五角大楼的格罗夫斯上校接替马歇尔上校。格罗夫斯在赴任之前,被提升为准将。

格罗夫斯在上任后不到48小时内就成功地把计划的优先权升为最高级,并选定田纳西州的橡树岭作为铀同位素分离工厂基地。因为马歇尔上校的总办公室最初将设在纽约城,他们决定把新管区的名称命名为“曼哈顿”。于是,“曼哈顿工程区(或简称为曼工区)”就这样诞生了。美国整个核研究计划不久后取名为 “曼哈顿计划”。

曼哈顿计划的最终目标是赶在战争以前造出原子弹。虽然在这个计划以前,S?执行委员会就肯定了它的可行性,但要实现这一新的爆炸,还有大量的理论和工程技术问题需要解决。在劳伦斯、康普顿等人的推荐下,格罗夫斯请奥本海默负责这一工作。为了使原子弹研究计划能够顺利完成,根据奥本海默的建议,军事当局决定建立一个新的快中子反应和原子弹结构研究基地,这就是后来闻名于世的洛斯阿拉莫斯实验室。奥本海默凭着他的才能与智慧,以及他对于原子弹的深刻洞察力,被任命为洛斯阿拉莫斯实验室主任。正是由于这样一个至关重要的任命,才使他在日后赢得了美国“原子弹之父”的称号。

奥本海默开始时对困难估计不足,认为只要6名物理学家和100多名工程技术人员就足够了。但实验室到1945年时,发展到拥有2000多名文职研究人员和3000多名军事人员,其中包括1000多名科学家。

鉴于大多数科学家都反对实验室的军事化,格罗夫斯同意加州大学成为洛斯阿拉莫斯名义上的管理单位和合同保证单位,基地的军队负责实验室建设、后勤供应和安全保障。这就保证了实验室内部的自由学术讨论。奥本海默鼓励科学家们大胆地讨论原子弹的有关科学问题,提出即使看门人的意见,也会对原子弹的成功有一定的帮助。奥本海默注意倾听任何人的意见,掌握着整个实验进程。有些参与核研究的物理学家后来回忆说,他们自己甚至都不如奥本海默清楚自己工作的细节和进展。在很多问题上,都是由于奥本海默的决断才取得突破,保证了原子弹研制时间表的执行。奥本海默在科学家、普通职工和政府官员中的威望越来越高。洛斯阿拉莫斯素有“诺贝尔奖获得者集中营”之誉,人们称奥本海默为这个集中营的“营长”。奥本海默没有获过诺贝尔奖,却拥有如此高的个人威望,他的组织才能与人格魅力由此可见一斑。

在“曼哈顿工程区”工作的15万人当中,只有12个人知道全盘的计划。其实,全体人员中很少有人知道他们是在从事制造原子弹的工作。例如,洛斯阿拉莫斯计算中心长时期内进行复杂的计算,但大部分工作人员不了解这些工作的实际意义。由于他们不知道工作目的,所以也就不可能使他们对工作发生真正的兴趣。后来,有一个年轻的说明了他们是在做什么样的工作。此后,这里的工作达到了高潮,并且有许多工作人员自愿留下来加班加点。经过全体人员的艰苦努力,原子弹的许多技术与工程问题得到解决。1945年7月15日凌晨5点30分,世界上第一颗原子弹“胖子”试验成功。8月6日和9日,美国分别在日本的广岛和长崎投下了原子弹。随着苏联军队出兵我国东北,日本天皇于14日宣布无条件投降,第二次世界大战结束了。

曼哈顿计划不仅造出了原子弹,也留下了14亿美元的财产,包括一个具有9000人的洛斯阿拉莫斯核武器实验室;一个具有36000人、价值9亿美元的橡树岭铀材料生产工厂和附带的一个实验室;一个具有17000人、价值3亿多美元的汉福特钚材料生产工厂,以及分布在伯克利和芝加哥等地的实验室。

1946年7月,在原子弹研制成功一周年之际,美国参、众两院经过激烈的争论,通过了一项由参议员麦克马洪提出的议案。杜鲁门于8月1日签署命令,提案开始正式生效,这就是《1946年原子能法令》。它标志着美国战时核计划的结束和新的过渡时期的开始,也成为和平时斯整个美国原子能发展的指导纲领。

《1946年原子能法令》正式生效后,格罗夫斯领导的曼哈顿工程在国会和政府的同意下,继续支撑着整个核计划。当美国新的原子能委员会组成后,杜鲁门决定在1946年的最后一天晚上12点,将原曼哈顿工程的全部财产和权力移交给原子能委员会,从而正式开始了一个新的过渡时期。原子能委员会设有四个部:研究部,它控制一切与原子能有关的研究;生产部,它拥有并控制一切生产裂变材料和原子能的设施,组织核裂变材料的生产;工程部,它指导一切与原子能发展有关的设备和工程;军事应用部,它处理与军备有关的原子能事项。原子能委员会总部也从橡树岭迁到了华盛顿。

后来,美国政府决定建立国家实验室,其中最著名的有芝加哥附近的阿贡国家实验室和纽约长岛的布鲁克海文国家实验室(BNL)。这两个实验室为高能物理的发展做出了贡献,特别是丁肇中教授,就是于1974年利用布鲁克海文实验室的加速器AGS发现J粒子的,并因此获得诺贝尔物理学奖。

《毁灭公爵-曼哈顿计划》 - 游戏说明 中文名称:毁灭公爵-曼哈顿计划
英文名称:Duke Nukem:Manhattan Project
版本:硬盘版
发行时间:2002年06月15日
制作发行:INFOGRAMES
地区:美国,英国

语言:英语
编辑本段 回目录 《毁灭公爵-曼哈顿计划》 - 简介:在没有删减任何东西的前提下(包括完整的音乐/动画)
游戏安装包由173MB-->115MB,增加安装过程背景音乐,仅此而已。
《毁灭公爵-曼哈顿计划》是我玩过的最好的电脑横版动作游戏之一,尤其是火爆刺激的BOSS战,即使与PS2/XBOX《魂斗罗》等动作大作相比也毫不逊色。我发布的《毁灭公爵-曼哈顿计划》硬盘版是与光盘版内容/音乐/动画完全相同的完美硬盘版(容量为173MB),只要解压至Duke Nukem目录即可直接运行游戏。
编辑本段 回目录 《毁灭公爵-曼哈顿计划》 - 游戏配置如因PC配置较低游戏不流畅,请运行游戏,进入主菜单option下的graphics选项,修改Driver下的OPENGL为Direct3d8,修改分辨率为1024*768*16 或800*600*16 或640*480*16(根据PC配置修改),accept退回主菜单进入游戏即可
机种:PC
发行商:恒星科技
开发商:INFOGRAMES
相关公司:ARUSH Games
游戏类型:全3D横向动作游戏
期待程度:9分
发行时间:2002年6月15日
游戏难度:容易
稳定性:稳定
版本:零售
操作系统:Windows 95/98/ME/2000/XP (安装 DirectX 8.0 or higher).
官方最小配置:
CPU: Intel P2 350mhz/AMD K6-2 400mhz/Cyrix M2 433mhz 或其他兼容CPU.
内存: Win9x/ME:64Mb 或更多 Win2k/XP: 128Mb 或更多 .
显卡: 支持Direct3D 8/OpenGl的显卡/8Mb显存.
硬盘: 300 MB 硬盘空间.
声卡: AC97.
=====================================================
官方推荐配置:
CPU: Intel P3/AMD K7 500mhz or faster/VIA C3 600mhz 或更快
内存: Win9x/ME:128Mb 或更多 Win2k/XP: 192Mb 或更多 .
显卡: 支持Direct3D8/OpenGl的 AGP显卡 / 16Mb 或更多显存.
编辑本段 回目录 《毁灭公爵-曼哈顿计划》 - 特色翻开电脑游戏史,有一男一女分别被公认是动作派角色的代表性人物:性感美女劳拉以及硬汉毁灭公爵(Duke Nukem)。数年前,真正带动第一人称动作射击游戏(FPS)热潮的游戏除了《毁灭战士》(Doom)和《雷神之锤》(Quake)外,就数《毁灭公爵3D》最为有名。
毁灭公爵其实是以电影明星“阿诺”为脚本设计出的角色,但毁灭公爵他不只身手一流,嘴上功夫更是了得。成功的角色也同时大幅提升了游戏的可玩性,续集更年年登上GameSpy等国外媒体“最期待游戏”的冠军宝座!
《毁灭公爵:曼哈顿计划》(Duke Nukem: Manhattan Project)正是一套以毁灭公爵为主角,最特别最出人意料的地方,是他的游戏进行方式并非FPS,而是全3D横向卷轴。
研发小组在场景设计上,花了很多心血,目的就是要让《毁灭公爵:曼哈顿计划》整个游戏不但能保持“横向卷轴”的简易操纵性,更能突显出3D化场景的千变万化之妙!游戏中场景虽说是“横向”,但在3D引擎及摄影镜头的配合之下,玩家操纵的毁灭公爵 将可在各种角度移动、跳跃及攻击,甚至作出将敌人推落铁轨,让火车一辗而过等等的精彩动作。
游戏中玩家将闯荡被变种人所占领的纽约市,在 “中国城”、“地下铁站”、“核子工厂”等9大关卡中大显身手,杀尽异形;这些关卡不仅大的吓人,更具有许多地形变化,以及大量的隐藏地点等待玩家去发掘。此外,配合火箭推进器、定时炸弹等装备,玩家更能带著《毁灭公爵》飞上天遁下地,甚至抓住直升机垂下的绳梯,在高空中表演如成龙般的特技动作!

随机采样方法整理与讲解(MCMCGibbs Sampling等)

本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅。其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:)

背景

随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation)。这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆、冯.诺依曼、费米、费曼、Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室研究裂变物质的中子连锁反应的时候,开始使用统计模拟的方法,并在最早的计算机上进行编程实现。[3]

随机模拟中有一个重要的问题就是给定一个概率分布p(x),我们如何在计算机中生成它的样本。一般而言均匀分布 Uniform(0,1)的样本是相对容易生成的。 通过线性同余发生器可以生成伪随机数,我们用确定性算法生成[0,1]之间的伪随机数序列后,这些序列的各种统计指标和均匀分布 Uniform(0,1) 的理论计算结果非常接近。这样的伪随机序列就有比较好的统计性质,可以被当成真实的随机数使用。

 

下面总结这么几点:

1、蒙特卡洛数值积分

2、均匀分布,Box-Muller 变换

3、Monte Carlo principle

4、接受-拒绝抽样(Acceptance-Rejection sampling)

5、重要性抽样(Importance sampling)

6、马尔科夫链,马尔科夫稳态

7、MCMC——Metropolis-Hasting算法

8、MCMC——Gibbs Sampling算法

 

1、蒙特卡洛数值积分

如果我们要求f(x)的积分,如

而f(x)的形式比较复杂积分不好求,则可以通过数值解法来求近似的结果。常用的方法是蒙特卡洛积分:

mathtex

这样把q(x)看做是x在区间内的概率分布,而把前面的分数部门看做一个函数,然后在q(x)下抽取n个样本,当n足够大时,可以用采用均值来近似:

因此只要q(x)比较容易采到数据样本就行了。随机模拟方法的核心就是如何对一个概率分布得到样本,即抽样(sampling)。下面我们将介绍常用的抽样方法。

 

2、均匀分布,Box-Muller 变换

在计算机中生成[0,1]之间的伪随机数序列,就可以看成是一种均匀分布。而随机数生成方法有很多,最简单的如:

当然计算机产生的随机数都是伪随机数,不过一般也就够用了。

 

[Box-Muller 变换]  如果随机变量 U1,U2 独立且U1,U2∼Uniform[0,1],

image

则 Z0,Z1 独立且服从标准正态分布。

 

3、Monte Carlo principle

Monte Carlo 抽样计算随即变量的期望值是接下来内容的重点:X 表示随即变量,服从概率分布 p(x), 那么要计算 f(x) 的期望,只需要我们不停从 p(x) 中抽样xi,然后对这些f(xi)取平均即可近似f(x)的期望。

 

 

4、接受-拒绝抽样(Acceptance-Rejection sampling)[2]

很多实际问题中,p(x)是很难直接采样的的,因此,我们需要求助其他的手段来采样。既然 p(x) 太复杂在程序中没法直接采样,那么我设定一个程序可抽样的分布 q(x) 比如高斯分布,然后按照一定的方法拒绝某些样本,达到接近 p(x) 分布的目的,其中q(x)叫做 proposal distribution 。

具体操作如下,设定一个方便抽样的函数 q(x),以及一个常量 k,使得 p(x) 总在 kq(x) 的下方。(参考上图)

  • x 轴方向:从 q(x) 分布抽样得到 a。(如果是高斯,就用之前说过的 tricky and faster 的算法更快)
  • y 轴方向:从均匀分布(0, kq(a)) 中抽样得到 u。
  • 如果刚好落到灰色区域: u > p(a), 拒绝, 否则接受这次抽样
  • 重复以上过程

在高维的情况下,Rejection Sampling 会出现两个问题,第一是合适的 q 分布比较难以找到,第二是很难确定一个合理的 k 值。这两个问题会导致拒绝率很高,无用计算增加。

 

5、重要性抽样(Importance sampling)[2]

Importance Sampling 也是借助了容易抽样的分布 q (proposal distribution)来解决这个问题,直接从公式出发:

其中,p(z) / q(z) 可以看做 importance weight。我们来考察一下上面的式子,p 和 f 是确定的,我们要确定的是 q。要确定一个什么样的分布才会让采样的效果比较好呢?直观的感觉是,样本的方差越小期望收敛速率越快。比如一次采样是 0, 一次采样是 1000, 平均值是 500,这样采样效果很差,如果一次采样是 499, 一次采样是 501, 你说期望是 500,可信度还比较高。在上式中,我们目标是 p×f/q 方差越小越好,所以 |p×f| 大的地方,proposal distribution q(z) 也应该大。举个稍微极端的例子:

第一个图表示 p 分布, 第二个图的阴影区域 f = 1,非阴影区域 f = 0, 那么一个良好的 q 分布应该在左边箭头所指的区域有很高的分布概率,因为在其他区域的采样计算实际上都是无效的。这表明 Importance Sampling 有可能比用原来的 p 分布抽样更加有效。

但是可惜的是,在高维空间里找到一个这样合适的 q 非常难。即使有 Adaptive importance sampling 和 Sampling-Importance-Resampling(SIR) 的出现,要找到一个同时满足 easy to sample 并且 good approximations 的 proposal distribution, it is often impossible!

 

6、马尔科夫链,马尔科夫稳态

在讲蒙特卡洛方法之前,必须要先讲一下马尔科夫链;马氏链的数学定义:

image

也就是说前一个状态只与当前状态有关,而与其他状态无关,Markov Chain 体现的是状态空间的转换关系,下一个状态只决定与当前的状态(可以联想网页爬虫原理,根据当前页面的超链接访问下一个网页)。如下图:

举一个例子,如果当前状态为 u(x) = (0.5, 0.2, 0.3), 那么下一个矩阵的状态就是 u(x)T = (0.18, 0.64, 0.18), 依照这个转换矩阵一直转换下去,最后的系统就趋近于一个稳定状态 (0.22, 0.41, 0.37) (此处只保留了两位有效数字)。而事实证明无论你从那个点出发,经过很长的 Markov Chain 之后都会汇集到这一点。[2]

再举一个例子,社会学家经常把人按其经济状况分成3类:下层(lower-class)、中层(middle-class)、上层(upper-class),我们用1,2,3 分别代表这三个阶层。社会学家们发现决定一个人的收入阶层的最重要的因素就是其父母的收入阶层。如果一个人的收入属于下层类别,那么他的孩子属于下层收入的概率是 0.65, 属于中层收入的概率是 0.28, 属于上层收入的概率是 0.07。事实上,从父代到子代,收入阶层的变化的转移概率如下

使用矩阵的表示方式,转移概率矩阵记为

image

image

我们发现从第7代人开始,这个分布就稳定不变了,事实上,在这个问题中,从任意初始概率分布开始都会收敛到这个上面这个稳定的结果。

image

注:要求图是联通的(没有孤立点),同时不存在一个联通的子图是没有对外的出边的(就像黑洞一样)。

这个马氏链的收敛定理非常重要,所有的 MCMC(Markov Chain Monte Carlo) 方法都是以这个定理作为理论基础的。

对于给定的概率分布p(x),我们希望能有便捷的方式生成它对应的样本。由于马氏链能收敛到平稳分布, 于是一个很的漂亮想法是:如果我们能构造一个转移矩阵为P的马氏链,使得该马氏链的平稳分布恰好是p(x), 那么我们从任何一个初始状态x0出发沿着马氏链转移, 得到一个转移序列 x0,x1,x2,⋯xn,xn+1⋯,, 如果马氏链在第n步已经收敛了,于是我们就得到了 π(x) 的样本xn,xn+1⋯。

这个绝妙的想法在1953年被 Metropolis想到了,为了研究粒子系统的平稳性质, Metropolis 考虑了物理学中常见的波尔兹曼分布的采样问题,首次提出了基于马氏链的蒙特卡罗方法,即Metropolis算法,并在最早的计算机上编程实现。Metropolis 算法是首个普适的采样方法,并启发了一系列 MCMC方法,所以人们把它视为随机模拟技术腾飞的起点。 Metropolis的这篇论文被收录在《统计学中的重大突破》中, Metropolis算法也被遴选为二十世纪的十个最重要的算法之一。

我们接下来介绍的MCMC 算法是 Metropolis 算法的一个改进变种,即常用的 Metropolis-Hastings 算法。由上一节的例子和定理我们看到了,马氏链的收敛性质主要由转移矩阵P 决定, 所以基于马氏链做采样的关键问题是如何构造转移矩阵P,使得平稳分布恰好是我们要的分布p(x)。如何能做到这一点呢?我们主要使用如下的定理。

 

image

 

image

                                    马氏链转移和接受概率

 

假设我们已经有一个转移矩阵Q(对应元素为q(i,j)), 把以上的过程整理一下,我们就得到了如下的用于采样概率分布p(x)的算法。

 

image

image

 

8、MCMC——Gibbs Sampling算法

image

          平面上马氏链转移矩阵的构造

 

image

image

 

以上算法收敛后,得到的就是概率分布p(x1,x2,⋯,xn)的样本,当然这些样本并不独立,但是我们此处要求的是采样得到的样本符合给定的概率分布,并不要求独立。同样的,在以上算法中,坐标轴轮换采样不是必须的,可以在坐标轴轮换中引入随机性,这时候转移矩阵 Q 中任何两个点的转移概率中就会包含坐标轴选择的概率,而在通常的 Gibbs Sampling 算法中,坐标轴轮换是一个确定性的过程,也就是在给定时刻t,在一根固定的坐标轴上转移的概率是1。

 

以上是关于介绍一下“曼哈顿计划”?的主要内容,如果未能解决你的问题,请参考以下文章

随机模拟(MCMC)

随机采样方法整理与讲解(MCMCGibbs Sampling等)

备战数学建模41-蒙特卡罗模拟(攻坚战5)

备战数学建模41-蒙特卡罗模拟(攻坚战5)

蒙特卡罗(monteCarlo)

蒙特卡洛方法