不要怂,就是GAN (生成式对抗网络) :无约束条件的 GAN
Posted Charles-Wan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了不要怂,就是GAN (生成式对抗网络) :无约束条件的 GAN相关的知识,希望对你有一定的参考价值。
GAN 这个领域发展太快,日新月异,各种 GAN 层出不穷,前几天看到一篇关于 Wasserstein GAN 的文章,讲的很好,在此把它分享出来一起学习:https://zhuanlan.zhihu.com/p/25071913。相比 Wasserstein GAN ,我们的 DCGAN 好像低了一个档次,但是我们伟大的教育家鲁迅先生说过:“合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下”,(依稀记得那大概是我 7 - 8 岁的时候,鲁迅先生依偎在我身旁,带着和蔼可亲切的口吻对我说的这句话,他当时还加了一句话,小伙子你要记住,如果一句名言,你不知道是谁说的,那就是鲁迅说的)。所以我们的基础还是要打好的, DCGAN 是我们的基础,有了 DCGAN 的代码经验,相信写起 Wasserstein GAN 就顺手很多,所以,我们接下来继续来研究我们的无约束条件 DCGAN。
在上一篇文章中,我们用 MNIST 手写字符训练 GAN,生成网络 G 生成了相对比较好的手写字符,这一次,我们换个数据集,用 CelebA 人脸数据集来训练我们的 GAN,相比于手写字符,人脸数据集的分布更加复杂多样,长头发短头发,黄种人黑种人,戴眼镜不戴眼镜,男人女人等等,看看我们的生成网络 G 能否成功的检验出人脸数据集的分布。
首先准备数据:从官网分享的百度云盘连接 https://pan.baidu.com/s/1eSNpdRG#list/path=%2FCelebA%2FImg 下载 img_align_celeba.zip,在 /home/your_name/TensorFlow/DCGAN/data 文件夹下解压,得到 img_align_celeba 文件夹,里面有 20600 张人脸图片,在 /home/your_name/TensorFlow/DCGAN/data 文件夹下新建 img_align_celeba_tfrecords 文件夹,用来存放 tfrecords 文件,然后,在 /home/your_name/TensorFlow/DCGAN/ 下新建 convert_data.py,编写如下的代码,把人脸图片转化成 tfrecords 形式:
import os import time from PIL import Image import tensorflow as tf # 将图片裁剪为 128 x 128 OUTPUT_SIZE = 128 # 图片通道数,3 表示彩色 DEPTH = 3 def _int64_feature(value): return tf.train.Feature(int64_list = tf.train.Int64List(value = [value])) def _bytes_feature(value): return tf.train.Feature(bytes_list = tf.train.BytesList(value = [value])) def convert_to(data_path, name): """ Converts s dataset to tfrecords """ rows = 64 cols = 64 depth = DEPTH # 循环 12 次,产生 12 个 .tfrecords 文件 for ii in range(12): writer = tf.python_io.TFRecordWriter(name + str(ii) + \'.tfrecords\') # 每个 tfrecord 文件有 16384 个图片 for img_name in os.listdir(data_path)[ii*16384 : (ii+1)*16384]: # 打开图片 img_path = data_path + img_name img = Image.open(img_path) # 设置裁剪参数 h, w = img.size[:2] j, k = (h - OUTPUT_SIZE) / 2, (w - OUTPUT_SIZE) / 2 box = (j, k, j + OUTPUT_SIZE, k+ OUTPUT_SIZE) # 裁剪图片 img = img.crop(box = box) # image resize img = img.resize((rows,cols)) # 转化为字节 img_raw = img.tobytes() # 写入到 Example example = tf.train.Example(features = tf.train.Features(feature = { \'height\': _int64_feature(rows), \'width\': _int64_feature(cols), \'depth\': _int64_feature(depth), \'image_raw\': _bytes_feature(img_raw)})) writer.write(example.SerializeToString()) writer.close() if __name__ == \'__main__\': current_dir = os.getcwd() data_path = current_dir + \'/data/img_align_celeba/\' name = current_dir + \'/data/img_align_celeba_tfrecords/train\' start_time = time.time() print(\'Convert start\') print(\'\\n\' * 2) convert_to(data_path, name) print(\'\\n\' * 2) print(\'Convert done, take %.2f seconds\' % (time.time() - start_time))
运行之后,在 /home/your_name/TensorFlow/DCGAN/data/img_align_celeba_tfrecords/ 下会产生 12 个 .tfrecords 文件,这就是我们要的数据格式。
数据准备好之后,根据前面的经验,我们来写无约束条件的 DCGAN 代码,在 /home/your_name/TensorFlow/DCGAN/ 新建 none_cond_DCGAN.py 文件敲写代码,为了简便起见,代码中没有加注释并且把所有的代码总结到一个代码中,从代码中可以看到,我们自己写了一个 batch_norm 层,解决了 evaluation 函数中 is_train = False 的问题,并且可以断点续训练(只需要将开头的 LOAD_MODEL 设置为 True);此外该程序在开头采用很多的宏定义,可以方便的改为 tf.app.flags 定义的命令行参数,进而在命令行终端进行训练,还可以进行类的拓展,例如:
class DCGAN(object): def __init__(self): self.BATCH_SIZE = 64 ... def bias(self): ... ...
关于类的拓展,这里不做过多说明。
在 none_cond_DCGAN.py 文件中敲写如下代码:
import os import numpy as np import scipy.misc import tensorflow as tf BATCH_SIZE = 64 OUTPUT_SIZE = 64 GF = 64 # Dimension of G filters in first conv layer. default [64] DF = 64 # Dimension of D filters in first conv layer. default [64] Z_DIM = 100 IMAGE_CHANNEL = 3 LR = 0.0002 # Learning rate EPOCH = 5 LOAD_MODEL = False # Whether or not continue train from saved model。 TRAIN = True CURRENT_DIR = os.getcwd() def bias(name, shape, bias_start = 0.0, trainable = True): dtype = tf.float32 var = tf.get_variable(name, shape, tf.float32, trainable = trainable, initializer = tf.constant_initializer( bias_start, dtype = dtype)) return var def weight(name, shape, stddev = 0.02, trainable = True): dtype = tf.float32 var = tf.get_variable(name, shape, tf.float32, trainable = trainable, initializer = tf.random_normal_initializer( stddev = stddev, dtype = dtype)) return var def fully_connected(value, output_shape, name = \'fully_connected\', with_w = False): shape = value.get_shape().as_list() with tf.variable_scope(name): weights = weight(\'weights\', [shape[1], output_shape], 0.02) biases = bias(\'biases\', [output_shape], 0.0) if with_w: return tf.matmul(value, weights) + biases, weights, biases else: return tf.matmul(value, weights) + biases def lrelu(x, leak=0.2, name = \'lrelu\'): with tf.variable_scope(name): return tf.maximum(x, leak*x, name = name) def relu(value, name = \'relu\'): with tf.variable_scope(name): return tf.nn.relu(value) def deconv2d(value, output_shape, k_h = 5, k_w = 5, strides =[1, 2, 2, 1], name = \'deconv2d\', with_w = False): with tf.variable_scope(name): weights = weight(\'weights\', [k_h, k_w, output_shape[-1], value.get_shape()[-1]]) deconv = tf.nn.conv2d_transpose(value, weights, output_shape, strides = strides) biases = bias(\'biases\', [output_shape[-1]]) deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape()) if with_w: return deconv, weights, biases else: return deconv def conv2d(value, output_dim, k_h = 5, k_w = 5, strides =[1, 2, 2, 1], name = \'conv2d\'): with tf.variable_scope(name): weights = weight(\'weights\', [k_h, k_w, value.get_shape()[-1], output_dim]) conv = tf.nn.conv2d(value, weights, strides = strides, padding = \'SAME\') biases = bias(\'biases\', [output_dim]) conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape()) return conv def conv_cond_concat(value, cond, name = \'concat\'): """ Concatenate conditioning vector on feature map axis. """ value_shapes = value.get_shape().as_list() cond_shapes = cond.get_shape().as_list() with tf.variable_scope(name): return tf.concat(3, [value, cond * tf.ones(value_shapes[0:3] + cond_shapes[3:])]) def batch_norm(value, is_train = True, name = \'batch_norm\', epsilon = 1e-5, momentum = 0.9): with tf.variable_scope(name): ema = tf.train.ExponentialMovingAverage(decay = momentum) shape = value.get_shape().as_list()[-1] beta = bias(\'beta\', [shape], bias_start = 0.0) gamma = bias(\'gamma\', [shape], bias_start = 1.0) if is_train: batch_mean, batch_variance = tf.nn.moments( value, [0, 1, 2], name = \'moments\') moving_mean = bias(\'moving_mean\', [shape], 0.0, False) moving_variance = bias(\'moving_variance\', [shape], 1.0, False) ema_apply_op = ema.apply([batch_mean, batch_variance]) assign_mean = moving_mean.assign(ema.average(batch_mean)) assign_variance = \\ moving_variance.assign(ema.average(batch_variance)) with tf.control_dependencies([ema_apply_op]): mean, variance = \\ tf.identity(batch_mean), tf.identity(batch_variance) with tf.control_dependencies([assign_mean, assign_variance]): return tf.nn.batch_normalization( value, mean, variance, beta, gamma, 1e-5) else: mean = bias(\'moving_mean\', [shape], 0.0, False) variance = bias(\'moving_variance\', [shape], 1.0, False) return tf.nn.batch_normalization( value, mean, variance, beta, gamma, epsilon) def generator(z, is_train = True, name = \'generator\'): with tf.name_scope(name): s2, s4, s8, s16 = \\ OUTPUT_SIZE/2, OUTPUT_SIZE/4, OUTPUT_SIZE/8, OUTPUT_SIZE/16 h1 = tf.reshape(fully_connected(z, GF*8*s16*s16, \'g_fc1\'), [-1, s16, s16, GF*8], name = \'reshap\') h1 = relu(batch_norm(h1, name = \'g_bn1\', is_train = is_train)) h2 = deconv2d(h1, [BATCH_SIZE, s8, s8, GF*4], name = \'g_deconv2d1\') h2 = relu(batch_norm(h2, name = \'g_bn2\', is_train = is_train)) h3 = deconv2d(h2, [BATCH_SIZE, s4, s4, GF*2], name = \'g_deconv2d2\') h3 = relu(batch_norm(h3, name = \'g_bn3\', is_train = is_train)) h4 = deconv2d(h3, [BATCH_SIZE, s2, s2, GF*1], name = \'g_deconv2d3\') h4 = relu(batch_norm(h4, name = \'g_bn4\', is_train = is_train)) h5 = deconv2d(h4, [BATCH_SIZE, OUTPUT_SIZE, OUTPUT_SIZE, 3], name = \'g_deconv2d4\') return tf.nn.tanh(h5) def discriminator(image, reuse = False, name = \'discriminator\'): with tf.name_scope(name): if reuse: tf.get_variable_scope().reuse_variables() h0 = lrelu(conv2d(image, DF, name=\'d_h0_conv\'), name = \'d_h0_lrelu\') h1 = lrelu(batch_norm(conv2d(h0, DF*2, name=\'d_h1_conv\'), name = \'d_h1_bn\'), name = \'d_h1_lrelu\') h2 = lrelu(batch_norm(conv2d(h1, DF*4, name=\'d_h2_conv\'), name = \'d_h2_bn\'), name = \'d_h2_lrelu\') h3 = lrelu(batch_norm(conv2d(h2, DF*8, name=\'d_h3_conv\'), name = \'d_h3_bn\'), name = \'d_h3_lrelu\') h4 = fully_connected(tf.reshape(h3, [BATCH_SIZE, -1]), 1, \'d_h4_fc\') return tf.nn.sigmoid(h4), h4 def sampler(z, is_train = False, name = \'sampler\'): with tf.name_scope(name): tf.get_variable_scope().reuse_variables() return generator(z, is_train = is_train) def read_and_decode(filename_queue): """ read and decode tfrecords """ reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example,features = { \'image_raw\':tf.FixedLenFeature([], tf.string)}) image = tf.decode_raw(features[\'image_raw\'], tf.uint8) image = tf.reshape(image, [OUTPUT_SIZE, OUTPUT_SIZE, 3]) image = tf.cast(image, tf.float32) image = image / 255.0 return image def inputs(data_dir, batch_size, name = \'input\'): """ Reads input data num_epochs times. """ with tf.name_scope(name): filenames = [ os.path.join(data_dir,\'train%d.tfrecords\' % ii) for ii in range(12)] filename_queue = tf.train.string_input_producer(filenames) image = read_and_decode(filename_queue) images = tf.train.shuffle_batch([image], batch_size = batch_size, num_threads = 4, capacity = 20000 + 3 * batch_size, min_after_dequeue = 20000) return images def save_images(images, size, path): """ Save the samples images The best size number is int(max(sqrt(image.shape[1]),sqrt(image.shape[1]))) + 1 """ img = (images + 1.0) / 2.0 h, w = img.shape[1], img.shape[2] merge_img = np.zeros((h * size[0], w * size[1], 3)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] merge_img[j*h:j*h+h, i*w:i*w+w, :] = image return scipy.misc.imsave(path, merge_img) def train(): global_step = tf.Variable(0, name = \'global_step\', trainable = False) train_dir = CURRENT_DIR + \'/logs_without_condition/\' data_dir = CURRENT_DIR + \'/data/img_align_celeba_tfrecords/\' images = inputs(data_dir, BATCH_SIZE) z = tf.placeholder(tf.float32, [None, Z_DIM], name=\'z\') G = generator(z) D, D_logits = discriminator(images) samples = sampler(z) D_, D_logits_ = discriminator(G, reuse = True) d_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(D_logits, tf.ones_like(D))) d_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(D_logits_, tf.zeros_like(D_))) d_loss = d_loss_real + d_loss_fake g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(D_logits_, tf.ones_like(D_))) z_sum = tf.histogram_summary(\'z\', z) d_sum = tf.histogram_summary(\'d\', D) d__sum = tf.histogram_summary(\'d_\', D_) G_sum = tf.image_summary(\'G\', G) d_loss_real_sum = tf.scalar_summary(\'d_loss_real\', d_loss_real) d_loss_fake_sum = tf.scalar_summary(\'d_loss_fake\', d_loss_fake) d_loss_sum = tf.scalar_summary(\'d_loss\', d_loss) g_loss_sum = tf.scalar_summary(\'g_loss\', g_loss) g_sum = tf.merge_summary([z_sum, d__sum, G_sum, d_loss_fake_sum, g_loss_sum]) d_sum = tf.merge_summary([z_sum, d_sum, d_loss_real_sum, d_loss_sum]) t_vars = tf.trainable_variables() d_vars = [var for var in t_vars if \'d_\' in var.name] g_vars = [var for var in t_vars if \'g_\' in var.name] saver = tf.train.Saver() d_optim = tf.train.AdamOptimizer(LR, beta1 = 0.5) \\ .minimize(d_loss, var_list = d_vars, global_step = global_step) g_optim = tf.train.AdamOptimizer(LR, beta1 = 0.5) \\ .minimize(g_loss, var_list = g_vars, global_step = global_step) os.environ[\'CUDA_VISIBLE_DEVICES\'] = str(0) config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.2 sess = tf.InteractiveSession(config=config) writer = tf.train.SummaryWriter(train_dir, sess.graph) sample_z = np.random.uniform(-1, 1, size = (BATCH_SIZE, Z_DIM)) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess = sess, coord = coord) init = tf.initialize_all_variables() sess.run(init) start = 0 if LOAD_MODEL: print(" [*] Reading checkpoints...") ckpt = tf.train.get_checkpoint_state(train_dir) if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) saver.restore(sess, os.path.join(train_dir, ckpt_name)) global_step = ckpt.model_checkpoint_path.split(\'/\')[-1]\\ .split(\'-\')[-1] print(\'Loading success, global_step is %s\' % global_step) start = int(global_step) for epoch in range(EPOCH): batch_idxs = 3072 if epoch: start = 0 for idx in range(start, batch_idxs): batch_z = np.random.uniform(-1, 1, size = (BATCH_SIZE, Z_DIM)) _, summary_str = sess.run([d_optim, d_sum], feed_dict = {z: batch_z}) writer.add_summary(summary_str, idx+1) # Update G network _, summary_str = sess.run([g_optim, g_sum], feed_dict = {z: batch_z}) writer.add_summary(summary_str, idx+1) # Run g_optim twice to make sure that d_loss does not go to zero _, summary_str = sess.run([g_optim, g_sum], feed_dict = {z: batch_z}) writer.add_summary(summary_str, idx+1) errD_fake = d_loss_fake.eval({z: batch_z}) errD_real = d_loss_real.eval() errG = g_loss.eval({z: batch_z}) if idx % 20 == 0: print("[%4d/%4d] d_loss: %.8f, g_loss: %.8f" \\ % (idx, batch_idxs, errD_fake+errD_real, errG)) if idx % 100 == 0: sample = sess.run(samples, feed_dict = {z: sample_z}) samples_path = CURRENT_DIR + \'/samples_without_condition/\' save_images(sample, [8, 8], samples_path + \\ \'sample_%d_epoch_%d.png\' % (epoch, idx)) print \'\\n\'*2 print(\'=========== %d_epoch_%d.png save down ===========\' %(epoch, idx)) print \'\\n\'*2 if (idx % 512 == 0) or (idx + 1 == batch_idxs): checkpoint_path = os.path.join(train_dir, \'my_dcgan_tfrecords.ckpt\') saver.save(sess, checkpoint_path, global_step = idx+1) print \'********* model saved *********\' print \'******* start with %d *******\' % start coord.request_stop() coord.join(threads) sess.close() def evaluate(): eval_dir = CURRENT_DIR + \'/eval/\' checkpoint_dir = CURRENT_DIR + \'/logs_without_condition/\' z = tf.placeholder(tf.float32, [None, Z_DIM], name=\'z\') G = generator(z, is_train = False) sample_z1 = np.random.uniform(-1, 1, size=(BATCH_SIZE, Z_DIM)) sample_z2 = np.random.uniform(-1, 1, size=(BATCH_SIZE, Z_DIM)) sample_z3 = (sample_z1 + sample_z2) / 2 sample_z4 = (sample_z1 + sample_z3) / 2 sample_z5 = (sample_z2 + sample_z3) / 2 print("Reading checkpoints...") ckpt = tf.train.get_checkpoint_state(checkpoint_dir) saver = tf.train.Saver(tf.all_variables()) os.environ[\'CUDA_VISIBLE_DEVICES\'] = str(0) config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.2 sess = tf.InteractiveSession(config=config) if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split(\'/\')[-1].split(\'-\')[-1] saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name)) print(\'Loading success, global_step is %s\' % global_step) eval_sess1 = sess.run(G, feed_dict = {z: sample_z1}) eval_sess2 = sess.run(G, feed_dict = {z: sample_z4}) eval_sess3 = sess.run(G, feed_dict = {z: sample_z3}) eval_sess4 = sess.run(G, feed_dict = {z: sample_z5}) eval_sess5 = sess.run(G, feed_dict = {z: sample_z2}) print(eval_sess3.shape) save_images(eval_sess1, [8, 8], eval_dir + \'eval_%d.png\' % 1) save_images(eval_sess2, [8, 8], eval_dir + \'eval_%d.png\' % 2) save_images(eval_sess3, [8, 8], eval_dir + \'eval_%d.png\' % 3) save_images(eval_sess4, [8, 8], eval_dir + \'eval_%d.png\' % 4) save_images(eval_sess5, [8, 8], eval_dir + \'eval_%d.png\' % 5) sess.close() if __name__ == \'__main__\': if TRAIN: train() else: evaluate()
完成后,运行代码,网络开始训练,大致需要 1~2 个小时,训练就可以完成,在训练的过程中,可以看出 sampler 采样的生成结果越来越好,最后得到了一个如下图所示的结果,由于人脸的数据分布比手写数据分布复杂多样,所以生成器不能完全抓住人脸的特征,下图所示的第 6 行第 7 列就是一个很糟糕的生成图像。
训练完成后,我们用 tensorboard 打开网络的 graph,看看经过我们的精心设计,网络结构变成了什么样子:
可以看出来,这次的结构图,比之前的顺眼多了,简直是处女座的福音啊有木有。
至此,我们完成了 DCGAN 的代码,下一篇文章,我们来说说 Caffe 那点事。
参考文献:
1. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/how_tos/reading_data/convert_to_records.py
2. https://github.com/carpedm20/DCGAN-tensorflow
以上是关于不要怂,就是GAN (生成式对抗网络) :无约束条件的 GAN的主要内容,如果未能解决你的问题,请参考以下文章
不要怂 就是"干"如何用 TensorFlow 实现生成式对抗网络(GAN)