Poj 3525 Most Distant Point from the Sea

Posted weeping

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Poj 3525 Most Distant Point from the Sea相关的知识,希望对你有一定的参考价值。

地址:http://poj.org/problem?id=3525

题目:

Most Distant Point from the Sea
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5167   Accepted: 2331   Special Judge

Description

The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.

In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.

Input

The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.

n    
x1   y1
  ?  
xn   yn

Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.

n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xiyi)–(xi+1yi+1) (1 ≤ i ≤ n ? 1) and the line segment (xnyn)–(x1y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.

You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.

The last dataset is followed by a line containing a single zero.

Output

For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10?5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.

Sample Input

4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0

Sample Output

5000.000000
494.233641
34.542948
0.353553
思路:二分距离,然后用半平面交判断即可。
  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cmath>
  4 #include <algorithm>
  5 
  6 
  7 using namespace std;
  8 const double eps = 1e-10;
  9 //
 10 class Point
 11 {
 12 public:
 13     double x, y;
 14 
 15     Point(){}
 16     Point(double x, double y):x(x),y(y){}
 17 
 18     bool operator < (const Point &_se) const
 19     {
 20         return x<_se.x || (x==_se.x && y<_se.y);
 21     }
 22     /*******判断ta与tb的大小关系*******/
 23     static int sgn(double ta,double tb)
 24     {
 25         if(fabs(ta-tb)<eps)return 0;
 26         if(ta<tb)   return -1;
 27         return 1;
 28     }
 29     static double xmult(const Point &po, const Point &ps, const Point &pe)
 30     {
 31         return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
 32     }
 33     friend Point operator + (const Point &_st,const Point &_se)
 34     {
 35         return Point(_st.x + _se.x, _st.y + _se.y);
 36     }
 37     friend Point operator - (const Point &_st,const Point &_se)
 38     {
 39         return Point(_st.x - _se.x, _st.y - _se.y);
 40     }
 41     //点位置相同(double类型)
 42     bool operator == (const Point &_off) const
 43     {
 44         return  Point::sgn(x, _off.x) == 0 && Point::sgn(y, _off.y) == 0;
 45     }
 46     //点位置不同(double类型)
 47     bool operator != (const Point &_Off) const
 48     {
 49         return ((*this) == _Off) == false;
 50     }
 51     //两点间距离的平方
 52     static double dis2(const Point &_st,const Point &_se)
 53     {
 54         return (_st.x - _se.x) * (_st.x - _se.x) + (_st.y - _se.y) * (_st.y - _se.y);
 55     }
 56     //两点间距离
 57     static double dis(const Point &_st, const Point &_se)
 58     {
 59         return sqrt((_st.x - _se.x) * (_st.x - _se.x) + (_st.y - _se.y) * (_st.y - _se.y));
 60     }
 61 };
 62 //两点表示的向量
 63 class Line
 64 {
 65 public:
 66     Point s, e;//两点表示,起点[s],终点[e]
 67     double a, b, c;//一般式,ax+by+c=0
 68 
 69     Line(){}
 70     Line(const Point &s, const Point &e):s(s),e(e){}
 71     Line(double _a,double _b,double _c):a(_a),b(_b),c(_c){}
 72 
 73     //向量与点的叉乘,参数:点[_Off]
 74     //[点相对向量位置判断]
 75     double operator /(const Point &_Off) const
 76     {
 77         return (_Off.y - s.y) * (e.x - s.x) - (_Off.x - s.x) * (e.y - s.y);
 78     }
 79     //向量与向量的叉乘,参数:向量[_Off]
 80     friend double operator /(const Line &_st,const Line &_se)
 81     {
 82         return (_st.e.x - _st.s.x) * (_se.e.y - _se.s.y) - (_st.e.y - _st.s.y) * (_se.e.x - _se.s.x);
 83     }
 84     friend double operator *(const Line &_st,const Line &_se)
 85     {
 86         return (_st.e.x - _st.s.x) * (_se.e.x - _se.s.x) - (_st.e.y - _st.s.y) * (_se.e.y - _se.s.y);
 87     }
 88     //从两点表示转换为一般表示
 89     //a=y2-y1,b=x1-x2,c=x2*y1-x1*y2
 90     bool pton()
 91     {
 92         a = e.y - s.y;
 93         b = s.x - e.x;
 94         c = e.x * s.y - e.y * s.x;
 95         return true;
 96     }
 97 
 98     //-----------点和直线(向量)-----------
 99     //点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号)
100     //参数:点[_Off],向量[_Ori]
101     friend bool operator<(const Point &_Off, const Line &_Ori)
102     {
103         return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x)
104             < (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x);
105     }
106 
107     //点在直线上,参数:点[_Off]
108     bool lhas(const Point &_Off) const
109     {
110         return Point::sgn((*this) / _Off, 0) == 0;
111     }
112     //点在线段上,参数:点[_Off]
113     bool shas(const Point &_Off) const
114     {
115         return lhas(_Off)
116             && Point::sgn(_Off.x - min(s.x, e.x), 0) > 0 && Point::sgn(_Off.x - max(s.x, e.x), 0) < 0
117             && Point::sgn(_Off.y - min(s.y, e.y), 0) > 0 && Point::sgn(_Off.y - max(s.y, e.y), 0) < 0;
118     }
119 
120     //点到直线/线段的距离
121     //参数: 点[_Off], 是否是线段[isSegment](默认为直线)
122     double dis(const Point &_Off, bool isSegment = false)
123     {
124         ///化为一般式
125         pton();
126 
127         //到直线垂足的距离
128         double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b);
129 
130         //如果是线段判断垂足
131         if(isSegment)
132         {
133             double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / ( a * a + b * b);
134             double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b);
135             double xb = max(s.x, e.x);
136             double yb = max(s.y, e.y);
137             double xs = s.x + e.x - xb;
138             double ys = s.y + e.y - yb;
139             if(xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps)
140                 td = min(Point::dis(_Off,s), Point::dis(_Off,e));
141         }
142 
143         return fabs(td);
144     }
145 
146     //关于直线对称的点
147     Point mirror(const Point &_Off) const
148     {
149         ///注意先转为一般式
150         Point ret;
151         double d = a * a + b * b;
152         ret.x = (b * b * _Off.x - a * a * _Off.x - 2 * a * b * _Off.y - 2 * a * c) / d;
153         ret.y = (a * a * _Off.y - b * b * _Off.y - 2 * a * b * _Off.x - 2 * b * c) / d;
154         return ret;
155     }
156     //计算两点的中垂线
157     static Line ppline(const Point &_a, const Point &_b)
158     {
159         Line ret;
160         ret.s.x = (_a.x + _b.x) / 2;
161         ret.s.y = (_a.y + _b.y) / 2;
162         //一般式
163         ret.a = _b.x - _a.x;
164         ret.b = _b.y - _a.y;
165         ret.c = (_a.y - _b.y) * ret.s.y + (_a.x - _b.x) * ret.s.x;
166         //两点式
167         if(std::fabs(ret.a) > eps)
168         {
169             ret.e.y = 0.0;
170             ret.e.x = - ret.c / ret.a;
171             if(ret.e == ret. s)
172             {
173                 ret.e.y = 1e10;
174                 ret.e.x = - (ret.c - ret.b * ret.e.y) / ret.a;
175             }
176         }
177         else
178         {
179             ret.e.x = 0.0;
180             ret.e.y = - ret.c / ret.b;
181             if(ret.e == ret. s)
182             {
183                 ret.e.x = 1e10;
184                 ret.e.y = - (ret.c - ret.a * ret.e.x) / ret.b;
185             }
186         }
187         return ret;
188     }
189 
190     //------------直线和直线(向量)-------------
191     //直线重合,参数:直线向量[_st],[_se]
192     static bool equal(const Line &_st, const Line &_se)
193     {
194         return _st.lhas(_se.e) && _se.lhas(_se.s);
195     }
196     //直线平行,参数:直线向量[_st],[_se]
197     static bool parallel(const Line &_st,const Line &_se)
198     {
199         return Point::sgn(_st / _se, 0) == 0;
200     }
201     //两直线(线段)交点,参数:直线向量[_st],[_se],交点
202     //返回-1代表平行,0代表重合,1代表相交
203     static bool crossLPt(const Line &_st,const Line &_se,Point &ret)
204     {
205         if(Line::parallel(_st,_se))
206         {
207             if(Line::equal(_st,_se)) return 0;
208             return -1;
209         }
210         ret = _st.s;
211         double t = (Line(_st.s,_se.s)/_se)/(_st/_se);
212         ret.x += (_st.e.x - _st.s.x) * t;
213         ret.y += (_st.e.y - _st.s.y) * t;
214         return 1;
215     }
216     //------------线段和直线(向量)----------
217     //线段和直线交
218     //参数:直线[_st],线段[_se]
219     friend bool crossSL(const Line &_st,const Line &_se)
220     {
221         return Point::sgn((_st / _se.s) * (_st / _se.e) ,0) <= 0;
222     }
223 
224     //------------线段和线段(向量)----------
225     //判断线段是否相交(注意添加eps),参数:线段[_st],线段[_se]
226     static bool isCrossSS(const Line &_st,const Line &_se)
227     {
228         //1.快速排斥试验判断以两条线段为对角线的两个矩形是否相交
229         //2.跨立试验(等于0时端点重合)
230         return
231             max(_st.s.x, _st.e.x) >= min(_se.s.x, _se.e.x) &&
232             max(_se.s.x, _se.e.x) >= min(_st.s.x, _st.e.x) &&
233             max(_st.s.y, _st.e.y) >= min(_se.s.y, _se.e.y) &&
234             max(_se.s.y, _se.e.y) >= min(_st.s.y, _st.e.y) &&
235             Point::sgn((_st / Line(_st.s, _se.s)) * (_st / Line(_st.s, _se.e)), 0) <= 0 &&
236             Point::sgn((_se / Line(_se.s, _st.s)) * (_se / Line(_se.s, _st.e)), 0) <= 0;
237     }
238 };
239 class Polygon
240 {
241 public:
242     const static int maxpn = 100;
243     Point pt[maxpn];//点(顺时针或逆时针)
244     int n;//点的个数
245 
246     Point& operator[](int _p)
247     {
248         return pt[_p];
249     }
250 
251     //求多边形面积,多边形内点必须顺时针或逆时针
252     double area() const
253     {
254         double ans = 0.0;
255         for(int i = 0; i < n; i ++)
256         {
257             int nt = (i + 1) % n;
258             ans += pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
259         }
260         return fabs(ans / 2.0);
261     }
262     //求多边形重心,多边形内点必须顺时针或逆时针
263     Point gravity() const
264     {
265         Point ans;
266         ans.x = ans.y = 0.0;
267         double area = 0.0;
268         for(int i = 0; i < n; i ++)
269         {
270             int nt = (i + 1) % n;
271             double tp = pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
272             area += tp;
273             ans.x += tp * (pt[i].x + pt[nt].x);
274             ans.y += tp * (pt[i].y + pt[nt].y);
275         }
276         ans.x /= 3 * area;
277         ans.y /= 3 * area;
278         return ans;
279     }
280     //判断点在凸多边形内,参数:点[_Off]
281     bool chas(const Point &_Off) const
282     {
283         double tp = 0, np;
284         for(int i = 0; i < n; i ++)
285         {
286             np = Line(pt[i], pt[(i + 1) % n]) / _Off;
287             if(tp * np < -eps)
288                 return false;
289             tp = (fabs(np) > eps)?np: tp;
290         }
291         return true;
292     }
293     //判断点是否在任意多边形内[射线法],O(n)
294     bool ahas(const Point &_Off) const
295     {
296         int ret = 0;
297         double infv = 1e-10;//坐标系最大范围
298         Line l = Line(_Off, Point( -infv ,_Off.y));
299         for(int i = 0; i < n; i ++)
300         {
301             Line ln = Line(pt[i], pt[(i + 1) % n]);
302             if(fabs(ln.s.y - ln.e.y) > eps)
303             {
304                 Point tp = (ln.s.y > ln.e.y)? ln.s: ln.e;
305                 if(fabs(tp.y - _Off.y) < eps && tp.x < _Off.x + eps)
306                     ret ++;
307             }
308             else if(Line::isCrossSS(ln,l))
309                 ret ++;
310         }
311         return (ret % 2 == 1);
312     }
313     //凸多边形被直线分割,参数:直线[_Off]
314     Polygon split(Line _Off)
315     {
316         //注意确保多边形能被分割
317         Polygon ret;
318         Point spt[2];
319         double tp = 0.0, np;
320         bool flag = true;
321         int i, pn = 0, spn = 0;
322         for(i = 0; i < n; i ++)
323         {
324             if(flag)
325                 pt[pn ++] = pt[i];
326             else
327                 ret.pt[ret.n ++] = pt[i];
328             np = _Off / pt[(i + 1) % n];
329             if(tp * np < -eps)
330             {
331                 flag = !flag;
332                 Line::crossLPt(_Off,Line(pt[i], pt[(i + 1) % n]),spt[spn++]);
333             }
334             tp = (fabs(np) > eps)?np: tp;
335         }
336         ret.pt[ret.n ++] = spt[0];
337         ret.pt[ret.n ++] = spt[1];
338         n = pn;
339         return ret;
340     }
341 
342 
343     /** 卷包裹法求点集凸包,_p为输入点集,_n为点的数量 **/
344     void ConvexClosure(Point _p[],int _n)
345     {
346         sort(_p,_p+_n);
347         n=0;
348         for(int i=0;i<_n;i++)
349         {
350             while(n>1&&Point::sgn(Line(pt[n-2],pt[n-1])/Line(pt[n-2],_p[i]),0)<=0)
351                 n--;
352             pt[n++]=_p[i];
353         }
354         int _key=n;
355         for(int i=_n-2;i>=0;i--)
356         {
357             while(n>_key&&Point::sgn(Line(pt[n-2],pt[n-1])/Line(pt[n-2],_p[i]),0)<=0)
358                 n--;
359             pt[n++]=_p[i];
360         }
361         if(n>1)   n--;//除去重复的点,该点已是凸包凸包起点
362     }
363 //    /****** 寻找凸包的graham 扫描法********************/
364 //    /****** _p为输入的点集,_n为点的数量****************/
365 //    /**使用时需把gmp函数放在类外,并且看情况修改pt[0]**/
366 //    bool gcmp(const Point &ta,const Point &tb)/// 选取与最后一条确定边夹角最小的点,即余弦值最大者
367 //    {
368 //        double tmp=Line(pt[0],ta)/Line(pt[0],tb);
369 //        if(Point::sgn(tmp,0)==0)
370 //            return Point::dis(pt[0],ta)<Point::dis(pt[0],tb);
371 //        else if(tmp>0)
372 //            return 1;
373 //        return 0;
374 //    }
375 //    void graham(Point _p[],int _n)
376 //    {
377 //        int cur=0;
378 //        for(int i=1;i<_n;i++)
379 //            if(Point::sgn(_p[cur].y,_p[i].y)>0 || (Point::sgn(_p[cur].y,_p[i].y)==0 && Point::sgn(_p[cur].x,_p[i].x)>0))
380 //                cur=i;
381 //        swap(_p[cur],_p[0]);
382 //        n=0,pt[n++]=_p[0];
383 //        if(_n==1)   return;
384 //        sort(_p+1,_p+_n,Polygon::gcmp);
385 //        pt[n++]=_p[1],pt[n++]=_p[2];
386 //        for(int i=3;i<_n;i++)
387 //        {
388 //            while(Point::sgn(Line(pt[n-2],pt[n-1])/Line(pt[n-2],_p[i]),0)<0)
389 //                n--;
390 //            pt[n++]=_p[i];
391 //        }
392 //    }
393     //凸包旋转卡壳(注意点必须顺时针或逆时针排列)
394     //返回值凸包直径的平方(最远两点距离的平方)
395     double rotating_calipers()
396     {
397         int i = 1;
398         double ret = 0.0;
399         pt[n] = pt[0];
400         for(int j = 0; j < n; j ++)
401         {
402             while(fabs(Point::xmult(pt[i+1],pt[j], pt[j + 1])) > fabs(Point::xmult(pt[i],pt[j], pt[j + 1])) + eps)
403                 i = (i + 1) % n;
404             //pt[i]和pt[j],pt[i + 1]和pt[j + 1]可能是对踵点
405             ret = (ret, max(Point::dis(pt[i],pt[j]), Point::dis(pt[i + 1],pt[j + 1])));
406         }
407         return ret;
408     }
409 
410     //凸包旋转卡壳(注意点必须逆时针排列)
411     //返回值两凸包的最短距离
412     double rotating_calipers(Polygon &_Off)
413     {
414         int i = 0;
415         double ret = 1e10;//inf
416         pt[n] = pt[0];
417         _Off.pt[_Off.n] = _Off.pt[0];
418         //注意凸包必须逆时针排列且pt[0]是左下角点的位置
419         while(_Off.pt[i + 1].y > _Off.pt[i].y)
420             i = (i + 1) % _Off.n;
421         for(int j = 0; j < n; j ++)
422         {
423             double tp;
424             //逆时针时为 >,顺时针则相反
425             while((tp = Point::xmult(_Off.pt[i + 1],pt[j], pt[j + 1]) - Point::xmult(_Off.pt[i], pt[j], pt[j + 1])) > eps)
426                 i = (i + 1) % _Off.n;
427             //(pt[i],pt[i+1])和(_Off.pt[j],_Off.pt[j + 1])可能是最近线段
428             ret = min(ret, Line(pt[j], pt[j + 1]).dis(_Off.pt[i], true));
429             ret = min(ret, Line(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j + 1], true));
430             if(tp > -eps)//如果不考虑TLE问题最好不要加这个判断
431             {
432                 ret = min(ret, Line(pt[j], pt[j + 1]).dis(_Off.pt[i + 1], true));
433                 ret = min(ret, Line(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j], true));
434             }
435         }
436         return ret;
437     }
438 
439     //-----------半平面交-------------
440     //复杂度:O(nlog2(n))
441     //#include <algorithm>
442     //半平面计算极角函数[如果考虑效率可以用成员变量记录]
443     static double hpc_pa(const Line &_Off)
444     {
445         return atan2(_Off.e.y - _Off.s.y, _Off.e.x - _Off.s.x);
446     }
447     //半平面交排序函数[优先顺序: 1.极角 2.前面的直线在后面的左边]
448     static bool hpc_cmp(const Line &l, const Line &r)
449     {
450         double lp = hpc_pa(l), rp = hpc_pa(r);
451         if(fabs(lp - rp) > eps)
452             return lp < rp;
453         return Point::xmult(r.s,l.s, r.e) < -eps;
454     }
455     static int judege(const Line &_lx,const Line &_ly,const Line &_lz)
456     {
457         Point tmp;
458         Line::crossLPt(_lx,_ly,tmp);
459         return Point::sgn(Point::xmult(_lz.s,tmp,_lz.e),0);
460     }
461     //获取半平面交的多边形(多边形的核)
462     //参数:向量集合[l],向量数量[ln];(半平面方向在向量左边)
463     //函数运行后如果n[即返回多边形的点数量]为0则不存在半平面交的多边形(不存在区域或区域面积无穷大)
464     Polygon& halfPanelCross(Line _Off[], int ln)
465     {
466         Line dequeue[maxpn];//用于计算的双端队列
467         int i, tn, bot, top;
468         sort(_Off, _Off + ln, hpc_cmp);
469         //平面在向量左边的筛选
470         for(i = tn = 1; i < ln; i ++)
471             if(fabs(hpc_pa(_Off[i]) - hpc_pa(_Off[i - 1])) > eps)
472                 _Off[tn ++] = _Off[i];
473         ln = tn, n = 0, bot = 0, top = 1;
474         dequeue[0] = _Off[0];
475         dequeue[1] = _Off[1];
476         for(i = 2; i < ln; i ++)
477         {
478             while(bot < top &&  Polygon::judege(dequeue[top],dequeue[top-1],_Off[i]) > 0)
479                 top --;
480             while(bot < top &&  Polygon::judege(dequeue[bot],dequeue[bot+1],_Off[i]) > 0)
481                 bot ++;
482             dequeue[++ top] = _Off[i];
483         }
484         while(bot < top && Polygon::judege(dequeue[top],dequeue[top-1],dequeue[bot]) > 0)
485             top --;
486         while(bot < top && Polygon::judege(dequeue[bot],dequeue[bot+1],dequeue[top]) > 0)
487             bot ++;
488         //计算交点(注意不同直线形成的交点可能重合)
489         if(top <= bot + 1)
490             return (*this);
491         for(i = bot; i < top; i ++)
492             Line::crossLPt(dequeue[i],dequeue[i + 1],pt[n++]);
493         if(bot < top + 1)
494             Line::crossLPt(dequeue[bot],dequeue[top],pt[n++]);
495         return (*this);
496     }
497 };
498 
499 Point pt[100];
500 Line ln[100],ls[100];
501 Polygon py;
502 int n;
503 
504 void ml(Line &lx,Line &ly,double t)
505 {
506     Point tmp=lx.e-lx.s,of;
507     of=Point(-tmp.y,tmp.x);
508     double dis=sqrt(of.x*of.x+of.y*of.y);
509     of.x=of.x*t/dis,of.y=of.y*t/dis;
510     ly.s=lx.s+of,ly.e=lx.e+of;
511 }
512 int sc(double x)
513 {
514     for(int i=0;i<n;i++)
515         ml(ln[i],ls[i],x);
516     //for(int i=0;i<n;i++)
517     //    printf("%.2f %.2f %.2f %.2f\n",ls[i].s.x,ls[i].s.y,ls[i].e.x,ls[i].e.y);
518     py.halfPanelCross(ls,n);
519     //printf("==%d\n",py.n);
520     //for(int i=0;i<py.n;i++)
521     //    printf("%.2f %.2f\n",py.pt[i].x,py.pt[i].y);
522     return py.n;
523 }
524 int main(void)
525 {
526     while(scanf("%d",&n)&&n)
527     {
528         for(int i=0;i<n;i++)
529             scanf("%lf%lf",&pt[i].x,&pt[i].y);
530         pt[n]=pt[0];
531         for(int i=0;i<n;i++)
532             ln[i]=Line(pt[i],pt[i+1]);
533         //for(int i=0;i<n;i++)
534         //    printf("%.2f %.2f %.2f %.2f\n",ln[i].s.x,ln[i].s.y,ln[i].e.x,ln[i].e.y);
535         double l=0,r=1e8;
536         while(fabs(r-l)>=1e-5)
537         {
538             double mid=(r+l)/2.0;
539             if(sc(mid)) l=mid;
540             else    r=mid;
541         }
542         printf("%.6f\n",r);
543     }
544     return 0;
545 }

 

以上是关于Poj 3525 Most Distant Point from the Sea的主要内容,如果未能解决你的问题,请参考以下文章

POJ3525:Most Distant Point from the Sea——题解

POJ 3525 Most Distant Point from the Sea [半平面交 二分]

POJ3525-Most Distant Point from the Sea(二分+半平面交)

POJ3525 Most Distant Point from the Sea

poj 3525Most Distant Point from the Sea二分+半平面交

POJ3525:Most Distant Point from the Sea(二分+半平面交)