深入理解RunLoop(转载)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深入理解RunLoop(转载)相关的知识,希望对你有一定的参考价值。
RunLoop 是 ios 和 OS X 开发中非常基础的一个概念,这篇文章将从 CFRunLoop 的源码入手,介绍 RunLoop 的概念以及底层实现原理。之后会介绍一下在 iOS 中,苹果是如何利用 RunLoop 实现自动释放池、延迟回调、触摸事件、屏幕刷新等功能的。
目录
-
RunLoop 的概念
-
RunLoop 与线程的关系
-
RunLoop 对外的接口
-
RunLoop 的 Mode
-
RunLoop 的内部逻辑
-
RunLoop 的底层实现
-
苹果用 RunLoop 实现的功能
-
AutoreleasePool
-
事件响应
-
手势识别
-
界面更新
-
定时器
-
PerformSelecter
-
关于GCD
-
关于网络请求
-
RunLoop 的实际应用举例
-
AFNetworking
-
AsyncDisplayKit
RunLoop 的概念
一般来讲,一个线程一次只能执行一个任务,执行完成后线程就会退出。如果我们需要一个机制,让线程能随时处理事件但并不退出,通常的代码逻辑是这样的:
1
2
3
4
5
6
7
|
function loop() { initialize(); do { var message = get_next_message(); process_message(message); } while (message != quit); } |
这种模型通常被称作 Event Loop。 Event Loop 在很多系统和框架里都有实现,比如 Node.js 的事件处理,比如 Windows 程序的消息循环,再比如 OSX/iOS 里的 RunLoop。实现这种模型的关键点在于:如何管理事件/消息,如何让线程在没有处理消息时休眠以避免资源占用、在有消息到来时立刻被唤醒。
所 以,RunLoop 实际上就是一个对象,这个对象管理了其需要处理的事件和消息,并提供了一个入口函数来执行上面 Event Loop 的逻辑。线程执行了这个函数后,就会一直处于这个函数内部 "接受消息->等待->处理" 的循环中,直到这个循环结束(比如传入 quit 的消息),函数返回。
OSX/iOS 系统中,提供了两个这样的对象:NSRunLoop 和 CFRunLoopRef。
CFRunLoopRef 是在 CoreFoundation 框架内的,它提供了纯 C 函数的 API,所有这些 API 都是线程安全的。
NSRunLoop 是基于 CFRunLoopRef 的封装,提供了面向对象的 API,但是这些 API 不是线程安全的。
CFRunLoopRef 的代码是开源的,你可以在这里 http://opensource.apple.com/tarballs/CF/CF-855.17.tar.gz 下载到整个 CoreFoundation 的源码。为了方便跟踪和查看,你可以新建一个 Xcode 工程,把这堆源码拖进去看。
RunLoop 与线程的关系
首先,iOS 开发中能遇到两个线程对象: pthread_t 和 NSThread。过去苹果有份文档标 明了 NSThread 只是 pthread_t 的封装,但那份文档已经失效了,现在它们也有可能都是直接包装自最底层的 mach thread。苹果并没有提供这两个对象相互转换的接口,但不管怎么样,可以肯定的是 pthread_t 和 NSThread 是一一对应的。比如,你可以通过 pthread_main_np() 或 [NSThread mainThread] 来获取主线程;也可以通过 pthread_self() 或 [NSThread currentThread] 来获取当前线程。CFRunLoop 是基于 pthread 来管理的。
苹果不允许直接创建 RunLoop,它只提供了两个自动获取的函数:CFRunLoopGetMain() 和 CFRunLoopGetCurrent()。 这两个函数内部的逻辑大概是下面这样:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
/// 全局的Dictionary,key 是 pthread_t, value 是 CFRunLoopRef static CFMutableDictionaryRef loopsDic; /// 访问 loopsDic 时的锁 static CFSpinLock_t loopsLock; /// 获取一个 pthread 对应的 RunLoop。 CFRunLoopRef _CFRunLoopGet(pthread_t thread) { OSSpinLockLock(&loopsLock); if (!loopsDic) { // 第一次进入时,初始化全局Dic,并先为主线程创建一个 RunLoop。 loopsDic = CFDictionaryCreateMutable(); CFRunLoopRef mainLoop = _CFRunLoopCreate(); CFDictionarySetValue(loopsDic, pthread_main_thread_np(), mainLoop); } /// 直接从 Dictionary 里获取。 CFRunLoopRef loop = CFDictionaryGetValue(loopsDic, thread)); if (!loop) { /// 取不到时,创建一个 loop = _CFRunLoopCreate(); CFDictionarySetValue(loopsDic, thread, loop); /// 注册一个回调,当线程销毁时,顺便也销毁其对应的 RunLoop。 _CFSetTSD(..., thread, loop, __CFFinalizeRunLoop); } OSSpinLockUnLock(&loopsLock); return loop; } CFRunLoopRef CFRunLoopGetMain() { return _CFRunLoopGet(pthread_main_thread_np()); } CFRunLoopRef CFRunLoopGetCurrent() { return _CFRunLoopGet(pthread_self()); } |
从 上面的代码可以看出,线程和 RunLoop 之间是一一对应的,其关系是保存在一个全局的 Dictionary 里。线程刚创建时并没有 RunLoop,如果你不主动获取,那它一直都不会有。RunLoop 的创建是发生在第一次获取时,RunLoop 的销毁是发生在线程结束时。你只能在一个线程的内部获取其 RunLoop(主线程除外)。
RunLoop 对外的接口
在 CoreFoundation 里面关于 RunLoop 有5个类:
-
CFRunLoopRef
-
CFRunLoopModeRef
-
CFRunLoopSourceRef
-
CFRunLoopTimerRef
-
CFRunLoopObserverRef
其中 CFRunLoopModeRef 类并没有对外暴露,只是通过 CFRunLoopRef 的接口进行了封装。他们的关系如下:
一 个 RunLoop 包含若干个 Mode,每个 Mode 又包含若干个 Source/Timer/Observer。每次调用 RunLoop 的主函数时,只能指定其中一个 Mode,这个Mode被称作 CurrentMode。如果需要切换 Mode,只能退出 Loop,再重新指定一个 Mode 进入。这样做主要是为了分隔开不同组的 Source/Timer/Observer,让其互不影响。
CFRunLoopSourceRef 是事件产生的地方。Source有两个版本:Source0 和 Source1。
-
Source0 只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你需要先调用 CFRunLoopSourceSignal(source),将这个 Source 标记为待处理,然后手动调用 CFRunLoopWakeUp(runloop) 来唤醒 RunLoop,让其处理这个事件。
-
Source1 包含了一个 mach_port 和一个回调(函数指针),被用于通过内核和其他线程相互发送消息。这种 Source 能主动唤醒 RunLoop 的线程,其原理在下面会讲到。
CFRunLoopTimerRef 是基于时间的触发器,它和 NSTimer 是toll-free bridged 的,可以混用。其包含一个时间长度和一个回调(函数指针)。当其加入到 RunLoop 时,RunLoop会注册对应的时间点,当时间点到时,RunLoop会被唤醒以执行那个回调。
CFRunLoopObserverRef 是观察者,每个 Observer 都包含了一个回调(函数指针),当 RunLoop 的状态发生变化时,观察者就能通过回调接受到这个变化。可以观测的时间点有以下几个:
1
2
3
4
5
6
7
8
|
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) { kCFRunLoopEntry = (1UL << 0), // 即将进入Loop kCFRunLoopBeforeTimers = (1UL << 1), // 即将处理 Timer kCFRunLoopBeforeSources = (1UL << 2), // 即将处理 Source kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠 kCFRunLoopAfterWaiting = (1UL << 6), // 刚从休眠中唤醒 kCFRunLoopExit = (1UL << 7), // 即将退出Loop }; |
上 面的 Source/Timer/Observer 被统称为 mode item,一个 item 可以被同时加入多个 mode。但一个 item 被重复加入同一个 mode 时是不会有效果的。如果一个 mode 中一个 item 都没有,则 RunLoop 会直接退出,不进入循环。
RunLoop 的 Mode
CFRunLoopMode 和 CFRunLoop 的结构大致如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
struct __CFRunLoopMode { CFStringRef _name; // Mode Name, 例如 @"kCFRunLoopDefaultMode" CFMutableSetRef _sources0; // Set CFMutableSetRef _sources1; // Set CFMutableArrayRef _observers; // Array CFMutableArrayRef _timers; // Array ... }; struct __CFRunLoop { CFMutableSetRef _commonModes; // Set CFMutableSetRef _commonModeItems; // Set CFRunLoopModeRef _currentMode; // Current Runloop Mode CFMutableSetRef _modes; // Set ... }; |
这 里有个概念叫 "CommonModes":一个 Mode 可以将自己标记为"Common"属性(通过将其 ModeName 添加到 RunLoop 的 "commonModes" 中)。每当 RunLoop 的内容发生变化时,RunLoop 都会自动将 _commonModeItems 里的 Source/Observer/Timer 同步到具有 "Common" 标记的所有Mode里。
应 用场景举例:主线程的 RunLoop 里有两个预置的 Mode:kCFRunLoopDefaultMode 和 UITrackingRunLoopMode。这两个 Mode 都已经被标记为"Common"属性。DefaultMode 是 App 平时所处的状态,TrackingRunLoopMode 是追踪 ScrollView 滑动时的状态。当你创建一个 Timer 并加到 DefaultMode 时,Timer 会得到重复回调,但此时滑动一个TableView时,RunLoop 会将 mode 切换为 TrackingRunLoopMode,这时 Timer 就不会被回调,并且也不会影响到滑动操作。
有时你需要一个 Timer,在两个 Mode 中都能得到回调,一种办法就是将这个 Timer 分别加入这两个 Mode。还有一种方式,就是将 Timer 加入到顶层的 RunLoop 的 "commonModeItems" 中。"commonModeItems" 被 RunLoop 自动更新到所有具有"Common"属性的 Mode 里去。
CFRunLoop对外暴露的管理 Mode 接口只有下面2个:
1
2
|
CFRunLoopAddCommonMode(CFRunLoopRef runloop, CFStringRef modeName); CFRunLoopRunInMode(CFStringRef modeName, ...); |
Mode 暴露的管理 mode item 的接口有下面几个:
1
2
3
4
5
6
|
CFRunLoopAddSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName); CFRunLoopAddObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName); CFRunLoopAddTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode); CFRunLoopRemoveSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName); CFRunLoopRemoveObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName); CFRunLoopRemoveTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode); |
你 只能通过 mode name 来操作内部的 mode,当你传入一个新的 mode name 但 RunLoop 内部没有对应 mode 时,RunLoop会自动帮你创建对应的 CFRunLoopModeRef。对于一个 RunLoop 来说,其内部的 mode 只能增加不能删除。
苹果公开提供的 Mode 有两个:kCFRunLoopDefaultMode (NSDefaultRunLoopMode) 和 UITrackingRunLoopMode,你可以用这两个 Mode Name 来操作其对应的 Mode。
同 时苹果还提供了一个操作 Common 标记的字符串:kCFRunLoopCommonModes (NSRunLoopCommonModes),你可以用这个字符串来操作 Common Items,或标记一个 Mode 为 "Common"。使用时注意区分这个字符串和其他 mode name。
RunLoop 的内部逻辑
根据苹果在文档里的说明,RunLoop 内部的逻辑大致如下:
其内部代码整理如下 (太长了不想看可以直接跳过去,后面会有说明):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
/// 用DefaultMode启动 void CFRunLoopRun(void) { CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false ); } /// 用指定的Mode启动,允许设置RunLoop超时时间 int CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean stopAfterHandle) { return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled); } /// RunLoop的实现 int CFRunLoopRunSpecific(runloop, modeName, seconds, stopAfterHandle) { /// 首先根据modeName找到对应mode CFRunLoopModeRef currentMode = __CFRunLoopFindMode(runloop, modeName, false ); /// 如果mode里没有source/timer/observer, 直接返回。 if (__CFRunLoopModeIsEmpty(currentMode)) return ; /// 1. 通知 Observers: RunLoop 即将进入 loop。 __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopEntry); /// 内部函数,进入loop __CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled) { Boolean sourceHandledThisLoop = NO; int retVal = 0; do { /// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。 __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers); /// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。 __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources); /// 执行被加入的block __CFRunLoopDoBlocks(runloop, currentMode); /// 4. RunLoop 触发 Source0 (非port) 回调。 sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle); /// 执行被加入的block __CFRunLoopDoBlocks(runloop, currentMode); /// 5. 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。 if (__Source0DidDispatchPortLastTime) { Boolean hasMsg = __CFRunLoopServiceMachPort(dispatchPort, &msg) if (hasMsg) goto handle_msg; } /// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)。 if (!sourceHandledThisLoop) { __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting); } /// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。 /// ? 一个基于 port 的Source 的事件。 /// ? 一个 Timer 到时间了 /// ? RunLoop 自身的超时时间到了 /// ? 被其他什么调用者手动唤醒 __CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort) { mach_msg(msg, MACH_RCV_MSG, port); // thread wait for receive msg } /// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。 __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting); /// 收到消息,处理消息。 handle_msg: /// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。 if (msg_is_timer) { __CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time()) } /// 9.2 如果有dispatch到main_queue的block,执行block。 else if (msg_is_dispatch) { __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg); } /// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件 else { CFRunLoopSourceRef source1 = __CFRunLoopModeFindSourceForMachPort(runloop, currentMode, livePort); sourceHandledThisLoop = __CFRunLoopDoSource1(runloop, currentMode, source1, msg); if (sourceHandledThisLoop) { mach_msg(reply, MACH_SEND_MSG, reply); } } /// 执行加入到Loop的block __CFRunLoopDoBlocks(runloop, currentMode); if (sourceHandledThisLoop && stopAfterHandle) { /// 进入loop时参数说处理完事件就返回。 retVal = kCFRunLoopRunHandledSource; } else if (timeout) { /// 超出传入参数标记的超时时间了 retVal = kCFRunLoopRunTimedOut; } else if (__CFRunLoopIsStopped(runloop)) { /// 被外部调用者强制停止了 retVal = kCFRunLoopRunStopped; } else if (__CFRunLoopModeIsEmpty(runloop, currentMode)) { /// source/timer/observer一个都没有了 retVal = kCFRunLoopRunFinished; } /// 如果没超时,mode里没空,loop也没被停止,那继续loop。 } while (retVal == 0); } /// 10. 通知 Observers: RunLoop 即将退出。 __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit); } |
可以看到,实际上 RunLoop 就是这样一个函数,其内部是一个 do-while 循环。当你调用 CFRunLoopRun() 时,线程就会一直停留在这个循环里;直到超时或被手动停止,该函数才会返回。
RunLoop 的底层实现
从上面代码可以看到,RunLoop 的核心是基于 mach port 的,其进入休眠时调用的函数是 mach_msg()。为了解释这个逻辑,下面稍微介绍一下 OSX/iOS 的系统架构。
苹果官方将整个系统大致划分为上述4个层次:
-
应用层包括用户能接触到的图形应用,例如 Spotlight、Aqua、SpringBoard 等。
-
应用框架层即开发人员接触到的 Cocoa 等框架。
-
核心框架层包括各种核心框架、OpenGL 等内容。
-
Darwin 即操作系统的核心,包括系统内核、驱动、Shell 等内容,这一层是开源的,其所有源码都可以在 opensource.apple.com 里找到。
我们在深入看一下 Darwin 这个核心的架构:
其中,在硬件层上面的三个组成部分:Mach、BSD、IOKit (还包括一些上面没标注的内容),共同组成了 XNU 内核。
XNU 内核的内环被称作 Mach,其作为一个微内核,仅提供了诸如处理器调度、IPC (进程间通信)等非常少量的基础服务。
BSD 层可以看作围绕 Mach 层的一个外环,其提供了诸如进程管理、文件系统和网络等功能。
IOKit 层是为设备驱动提供了一个面向对象(C++)的一个框架。
Mach 本身提供的 API 非常有限,而且苹果也不鼓励使用 Mach 的 API,但是这些API非常基础,如果没有这些API的话,其他任何工作都无法实施。在 Mach 中,所有的东西都是通过自己的对象实现的,进程、线程和虚拟内存都被称为"对象"。和其他架构不同, Mach 的对象间不能直接调用,只能通过消息传递的方式实现对象间的通信。"消息"是 Mach 中最基础的概念,消息在两个端口 (port) 之间传递,这就是 Mach 的 IPC (进程间通信) 的核心。
Mach 的消息定义是在头文件的,很简单:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
typedef struct { mach_msg_header_t header; mach_msg_body_t body; } mach_msg_base_t; typedef struct { mach_msg_bits_t msgh_bits; mach_msg_size_t msgh_size; mach_port_t msgh_remote_port; mach_port_t msgh_local_port; mach_port_name_t msgh_voucher_port; mach_msg_id_t msgh_id; } mach_msg_header_t; |
一条 Mach 消息实际上就是一个二进制数据包 (BLOB),其头部定义了当前端口 local_port 和目标端口 remote_port,
发送和接受消息是通过同一个 API 进行的,其 option 标记了消息传递的方向:
1
2
3
4
5
6
7
8
|
mach_msg_return_t mach_msg( mach_msg_header_t *msg, mach_msg_option_t option, mach_msg_size_t send_size, mach_msg_size_t rcv_size, mach_port_name_t rcv_name, mach_msg_timeout_t timeout, mach_port_name_t notify); |
为 了实现消息的发送和接收,mach_msg() 函数实际上是调用了一个 Mach 陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach 中等同于系统调用。当你在用户态调用 mach_msg_trap() 时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg() 函数会完成实际的工作,如下图:
这些概念可以参考维基百科: System_call、Trap_(computing)。
RunLoop 的核心就是一个 mach_msg() (见上面代码的第7步),RunLoop 调用这个函数去接收消息,如果没有别人发送 port 消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS 的 App,然
以上是关于深入理解RunLoop(转载)的主要内容,如果未能解决你的问题,请参考以下文章