莫比乌斯反演笔记
Posted №〓→龙光←
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了莫比乌斯反演笔记相关的知识,希望对你有一定的参考价值。
已知:$\sum_{t|n}\mu (t)=[n=1]$
一,求${\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=1]}$
其中$n\leq 1e7,m\leq 1e7$
原式${=\sum_{i=1}^{n}\sum_{j=1}^{m} \sum_{t|i,t|j}\mu (t)}$
${=\sum_{t=1}^{n}\left \lfloor \frac{n}{t} \right \rfloor\left \lfloor \frac{m}{t} \right \rfloor\mu (t)}$
线性筛莫比乌斯函数即可
1 #include<iostream> 2 #include<cstdio> 3 #include<algorithm> 4 #include<vector> 5 #include<cstdlib> 6 #include<cmath> 7 #include<cstring> 8 using namespace std; 9 #define maxn 10010 10 #define llg long long 11 #define N 2010 12 #define yyj() freopen("input.txt","r",stdin),freopen("output.txt","w",stdout); 13 llg n,m,T,cnt,prime[maxn],mobius[maxn],bj[maxn]; 14 15 void init_mobius() 16 { 17 mobius[1]=1; 18 for (llg i=2;i<=N;i++) 19 { 20 if (!bj[i]) 21 { 22 prime[++cnt]=i; mobius[i]=-1; 23 } 24 for (llg j=1;j<=cnt && prime[j]*i<=N;j++) 25 { 26 bj[i*prime[j]]=1; 27 if (i%prime[j]) mobius[i*prime[j]]=-mobius[i]; 28 else 29 { 30 mobius[i*prime[j]]=0; 31 break; 32 } 33 } 34 } 35 } 36 37 int main() 38 { 39 yyj(); 40 cin>>T; 41 init_mobius(); 42 // for (llg i=1;i<=10;i++) cout<<i<<"-->"<<mobius[i]<<endl; 43 T=10; 44 while (T--) 45 { 46 llg ans=0; 47 scanf("%lld%lld",&n,&m); 48 for (llg t=1;t<=n;t++) 49 { 50 ans+=floor((n/t))*floor((m/t))*mobius[t]; 51 } 52 printf("%lld\n",ans*4+4); 53 } 54 return 0; 55 }
二,求${\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=g]$,$n\leq 1e7,m\leq 1e7}$
令:n\leq m
原式${=\sum _{g=1}^{n}g\sum _{i=1}^{\frac{n}{g}}\sum _{j=1}^{\frac{m}{g}}[gcd(i,j)=1]}$
${=\sum _{g=1}^{n}g\sum _{i=1}^{\left \lfloor \frac{n}{g} \right \rfloor}\sum _{j=1}^{\left \lfloor \frac{m}{g} \right \rfloor}\sum _{t|i,t|j}\mu (t)}$
${=\sum _{g=1}^{n}g\sum_{t=1}^{t\leq \frac{n}{g}}\left \lfloor \frac{n}{tg} \right \rfloor\left \lfloor \frac{m}{tg} \right \rfloor\mu (t)}$
推到这一步可以发现${\sum _{g=1}^{n}\sum_{t=1}^{t\leq \frac{n}{g}}}$是一个调和级数,预处理莫比乌斯函数,然后直接枚举g,然后就可以了。
以上是关于莫比乌斯反演笔记的主要内容,如果未能解决你的问题,请参考以下文章