FunDA- Reactive Streams:Play with IterateesEnumerator and Enumeratees
Posted 雪川大虫
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了FunDA- Reactive Streams:Play with IterateesEnumerator and Enumeratees相关的知识,希望对你有一定的参考价值。
在上一节我们介绍了Iteratee。它的功能是消耗从一些数据源推送过来的数据元素,不同的数据消耗方式代表了不同功能的Iteratee。所谓的数据源就是我们这节要讨论的Enumerator。Enumerator是一种数据源:它会根据下游数据消耗方(Iteratee)的具体状态主动向下推送数据元素。我们已经讨论过Iteratee的状态Step类型:
trait Step[E,+A]
case class Done[+A,E](a: A, remain: Input[E]) extends Step[E,A]
case class Cont[E,+A](k: Input[E] => InputStreamHandler[E,A]) extends Step[E,A]
case class Error[E](msg: String, loc:Input[E]) extends Step[E,Nothing]
这其中Iteratee通过Cont状态通知Enumerator可以发送数据元素,并提供了k函数作为Enumerator的数据推送函数。Enumerator推送的数据元素,也就是Iteratee的输入Input[E],除单纯数据元素之外还代表着数据源状态:
trait Input[+E]
case class EL[E](e: E) extends Input[E]
case object EOF extends Input[Nothing]
case object Empty extends Input[Nothing]
Enumerator通过Input[E]来通知Iteratee当前数据源状态,如:是否已经完成所有数据推送(EOF),或者当前推送了什么数据元素(El[E](e:E))。Enumerator主动向Iteratee输出数据然后返回新状态的Iteratee。我们可以从Enumerator的类型款式看得出:
trait Enumerator[E] {
/**
* Apply this Enumerator to an Iteratee
*/
def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]]
}
这个Future的目的主要是为了避免占用线程。实际上我们可以最终通过调用Iteratee的fold函数来实现Enumerator功能,如:
/**
* Creates an enumerator which produces the one supplied
* input and nothing else. This enumerator will NOT
* automatically produce Input.EOF after the given input.
*/
def enumInput[E](e: Input[E]) = new Enumerator[E] {
def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]] =
i.fold {
case Step.Cont(k) => eagerFuture(k(e))
case _ => Future.successful(i)
}(dec)
}
又或者通过构建器(constructor, apply)来构建Eumerator:
/**
* Create an Enumerator from a set of values
*
* Example:
* {{{
* val enumerator: Enumerator[String] = Enumerator("kiki", "foo", "bar")
* }}}
*/
def apply[E](in: E*): Enumerator[E] = in.length match {
case 0 => Enumerator.empty
case 1 => new Enumerator[E] {
def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]] = i.pureFoldNoEC {
case Step.Cont(k) => k(Input.El(in.head))
case _ => i
}
}
case _ => new Enumerator[E] {
def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]] = enumerateSeq(in, i)
}
}
/**
* Create an Enumerator from any TraversableOnce like collection of elements.
*
* Example of an iterator of lines of a file :
* {{{
* val enumerator: Enumerator[String] = Enumerator( scala.io.Source.fromFile("myfile.txt").getLines )
* }}}
*/
def enumerate[E](traversable: TraversableOnce[E])(implicit ctx: scala.concurrent.ExecutionContext): Enumerator[E] = {
val it = traversable.toIterator
Enumerator.unfoldM[scala.collection.Iterator[E], E](it: scala.collection.Iterator[E])({ currentIt =>
if (currentIt.hasNext)
Future[Option[(scala.collection.Iterator[E], E)]]({
val next = currentIt.next
Some((currentIt -> next))
})(ctx)
else
Future.successful[Option[(scala.collection.Iterator[E], E)]]({
None
})
})(dec)
}
/**
* An empty enumerator
*/
def empty[E]: Enumerator[E] = new Enumerator[E] {
def apply[A](i: Iteratee[E, A]) = Future.successful(i)
}
private def enumerateSeq[E, A]: (Seq[E], Iteratee[E, A]) => Future[Iteratee[E, A]] = { (l, i) =>
l.foldLeft(Future.successful(i))((i, e) =>
i.flatMap(it => it.pureFold {
case Step.Cont(k) => k(Input.El(e))
case _ => it
}(dec))(dec))
}
下面是个直接构建Enumerator的例子:
val enumUsers: Enumerator[String] = {
Enumerator("Tiger","Hover","Grand","John")
//> enumUsers : play.api.libs.iteratee.Enumerator[String] = [email protected]
在这个例子里的Enumerator就是用上面那个apply构建的。我们把enumUsers连接到costume Iteratee:
val consume = Iteratee.consume[String]() //> consume : play.api.libs.iteratee.Iteratee[String,String] = Cont(<function1>)
val consumeUsers = enumUsers.apply(consume) //> consumeUsers : scala.concurrent.Future[play.api.libs.iteratee.Iteratee[String,String]] = Success([email protected])
我们是用apply(consume)来连接Enumerator和Iteratees的。apply函数的定义如下:
/**
* Attaches this Enumerator to an [[play.api.libs.iteratee.Iteratee]], driving the
* Iteratee to (asynchronously) consume the input. The Iteratee may enter its
* [[play.api.libs.iteratee.Done]] or [[play.api.libs.iteratee.Error]]
* state, or it may be left in a [[play.api.libs.iteratee.Cont]] state (allowing it
* to consume more input after that sent by the enumerator).
*
* If the Iteratee reaches a [[play.api.libs.iteratee.Done]] state, it will
* contain a computed result and the remaining (unconsumed) input.
*/
def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]]
这是个抽象函数。举个例实现这个apply函数的例子:
/**
* Creates an enumerator which produces the one supplied
* input and nothing else. This enumerator will NOT
* automatically produce Input.EOF after the given input.
*/
def enumInput[E](e: Input[E]) = new Enumerator[E] {
def apply[A](i: Iteratee[E, A]): Future[Iteratee[E, A]] =
i.fold {
case Step.Cont(k) => eagerFuture(k(e))
case _ => Future.successful(i)
}(dec)
}
consumeUsers: Future[Iteratee[String,String]],我们用Future的函数来显示发送数据内容:
val futPrint = consumeUsers.flatMap { i => i.run }.map(println)
//> futPrint : scala.concurrent.Future[Unit] = List()
Await.ready(futPrint,Duration.Inf) //> TigerHoverGrandJohn res0: demo.worksheet.enumerator.futPrint.type = Success(())
另一种更直接的方式:
val futUsers = Iteratee.flatten(consumeUsers).run.map(println)
//> futUsers : scala.concurrent.Future[Unit] = List()
Await.ready(futPrint,Duration.Inf)
//> TigerHoverGrandJohnres1: demo.worksheet.enumerator.futPrint.type = Success(())
我们也可以使用函数符号 |>> :
val futPrintUsers = {
Iteratee.flatten(enumUsers |>> consume).run.map(println)
//> futPrintUsers : scala.concurrent.Future[Unit] = List()
}
Await.ready(futPrintUsers,Duration.Inf)
//> TigerHoverGrandJohn res2: demo.worksheet.enumerator.futPrintUsers.type = Success(())
我们还可以把两个Enumerator串联起来向一个Iteratee发送数据:
val futEnums = {
Iteratee.flatten {
(enumUsers >>> enumColors) |>> consume
}.run.map(println) //> futEnums : scala.concurrent.Future[Unit] = List()
}
Await.ready(futEnums,Duration.Inf)
//> TigerHoverGrandJohnRedWhiteBlueYellow res3: demo.worksheet.enumerator.futEnums.type = Success(())
当然,最实用的应该是把InputStream的数据推送给一个Iteratee,如把一个文件内容发送给Iteratee:
/**
* Create an enumerator from the given input stream.
*
* Note that this enumerator will block when it reads from the file.
*
* @param file The file to create the enumerator from.
* @param chunkSize The size of chunks to read from the file.
*/
def fromFile(file: java.io.File, chunkSize: Int = 1024 * 8)(implicit ec: ExecutionContext): Enumerator[Array[Byte]] = {
fromStream(new java.io.FileInputStream(file), chunkSize)(ec)
}
/**
* Create an enumerator from the given input stream.
*
* This enumerator will block on reading the input stream, in the supplied ExecutionContext. Care must therefore
* be taken to ensure that this isn‘t a slow stream. If using this with slow input streams, make sure the
* ExecutionContext is appropriately configured to handle the blocking.
*
* @param input The input stream
* @param chunkSize The size of chunks to read from the stream.
* @param ec The ExecutionContext to execute blocking code.
*/
def fromStream(input: java.io.InputStream, chunkSize: Int = 1024 * 8)(implicit ec: ExecutionContext): Enumerator[Array[Byte]] = {
implicit val pec = ec.prepare()
generateM({
val buffer = new Array[Byte](chunkSize)
val bytesRead = blocking { input.read(buffer) }
val chunk = bytesRead match {
case -1 => None
case `chunkSize` => Some(buffer)
case read =>
val input = new Array[Byte](read)
System.arraycopy(buffer, 0, input, 0, read)
Some(input)
}
Future.successful(chunk)
})(pec).onDoneEnumerating(input.close)(pec)
}
这项功能的核心函数是这个generateM,它的函数款式如下:
/**
* Like [[play.api.libs.iteratee.Enumerator.repeatM]], but the callback returns an Option, which allows the stream
* to be eventually terminated by returning None.
*
* @param e The input function. Returns a future eventually redeemed with Some value if there is input to pass, or a
* future eventually redeemed with None if the end of the stream has been reached.
*/
def generateM[E](e: => Future[Option[E]])(implicit ec: ExecutionContext): Enumerator[E] = checkContinue0(new TreatCont0[E] {
private val pec = ec.prepare()
def apply[A](loop: Iteratee[E, A] => Future[Iteratee[E, A]], k: Input[E] => Iteratee[E, A]) = executeFuture(e)(pec).flatMap {
case Some(e) => loop(k(Input.El(e)))
case None => Future.successful(Cont(k))
}(dec)
})
checkContinue0函数是这样定义的:
trait TreatCont0[E] {
def apply[A](loop: Iteratee[E, A] => Future[Iteratee[E, A]], k: Input[E] => Iteratee[E, A]): Future[Iteratee[E, A]]
}
def checkContinue0[E](inner: TreatCont0[E]) = new Enumerator[E] {
def apply[A](it: Iteratee[E, A]): Future[Iteratee[E, A]] = {
def step(it: Iteratee[E, A]): Future[Iteratee[E, A]] = it.fold {
case Step.Done(a, e) => Future.successful(Done(a, e))
case Step.Cont(k) => inner[A](step, k)
case Step.Error(msg, e) => Future.successful(Error(msg, e))
}(dec)
step(it)
}
}
从这段代码 case Step.Cont(k)=>inner[A](step, k)可以推断操作模式应该是当下游Iteratee在Cont状态下不断递归式调用Cont函数k向下推送数据e。我们再仔细看看generateM的函数款式;
def generateM[E](e: => Future[Option[E]])(implicit ec: ExecutionContext): Enumerator[E]
实际上刚才的操作就是重复调用这个e:=>Future[Option[E]]函数。再分析fromStream代码:
def fromStream(input: java.io.InputStream, chunkSize: Int = 1024 * 8)(implicit ec: ExecutionContext): Enumerator[Array[Byte]] = {
implicit val pec = ec.prepare()
generateM({
val buffer = new Array[Byte](chunkSize)
val bytesRead = blocking { input.read(buffer) }
val chunk = bytesRead match {
case -1 => None
case `chunkSize` => Some(buffer)
case read =>
val input = new Array[Byte](read)
System.arraycopy(buffer, 0, input, 0, read)
Some(input)
}
Future.successful(chunk)
})(pec).onDoneEnumerating(input.close)(pec)
}
我们看到传入generateM的参数是一段代码,在Iteratee状态为Cont时会不断重复运行,也就是说这段代码会逐次从输入源中读取chunkSize个Byte。这种做法是典型的Streaming方式,避免了一次性上载所有数据。下面是一个文件读取Enumerator例子:
import java.io._
val fileEnum: Enumerator[Array[Byte]] = {
Enumerator.fromFile(new File("/users/tiger/lines.txt"))
}
val futFile = Iteratee.flatten { fileEnum |>> consume }.run.map(println)
注意:fileEnum |>> consume并不能通过编译,这是因为fileEnum是个Enumerator[Array[Byte]],而consume是个Iteratee[String,String],Array[Byte]与String类型不符。我们可以用个Enumeratee来进行相关的转换。下面就介绍一下Enumeratee的功能。
Enumeratee其实是一种转换器。它把Enumerator产生的数据转换成能适配Iteratee的数据类型,或者Iteratee所需要的数据。比如我们想把一串字符类的数字汇总相加时,首先必须把字符转换成数字类型才能进行Iteratee的汇总操作:
val strNums = Enumerator("1","2","3") //> strNums : play.api.libs.iteratee.Enumerator[String] = play.a[email protected]
val sumIteratee: Iteratee[Int,Int] = Iteratee.fold(0)((s,i) => s+i)
//> sumIteratee : play.api.libs.iteratee.Iteratee[Int,Int] = Cont(<function1>)
val strToInt: Enumeratee[String,Int] = Enumeratee.map {s => s.toInt}
//> strToInt : play.api.libs.iteratee.Enumeratee[String,Int] = [email protected]
strNums |>> strToInt.transform(sumIteratee) //> res4: scala.concurrent.Future[play.api.libs.iteratee.Iteratee[String,Int]] = List()
strNums |>> strToInt &>> sumIteratee //> res5: scala.concurrent.Future[play.api.libs.iteratee.Iteratee[String,Int]] = List()
strNums.through(strToInt) |>> sumIteratee //> res6: scala.concurrent.Future[play.api.libs.iteratee.Iteratee[Int,Int]] = List()
val futsum = Iteratee.flatten(strNums &> strToInt |>> sumIteratee).run.map(println)
//> futsum : scala.concurrent.Future[Unit] = List()
Await.ready(futsum,Duration.Inf) //> 6
//| res7: demo.worksheet.enumerator.futsum.type = Success(())
在上面这个例子里Enumerator数据元素是String, Iteratee操作数据类型是Int, strToInt是个把String转换成Int的Enumeratee,我们用了几种转换方式的表达形式,结果都是一样的,等于6。我们可以用Enumerator.through或者Enumeratee.transform来连接Enumerator与Iteratee。当然,我们也可以筛选输入Iteratee的数据:
val sum2 = strNums &> Enumeratee.take(2) &> strToInt |>> sumIteratee
//> sum2 : scala.concurrent.Future[play.api.libs.iteratee.Iteratee[Int,Int]] =List()
val futsum2 = Iteratee.flatten(sum2).run.map(println)
//> futsum2 : scala.concurrent.Future[Unit] = List()
Await.ready(futsum2,Duration.Inf) //> 3
//| res8: demo.worksheet.enumerator.futsum2.type = Success(())
上面例子里的Enumeratee.take(2)就是一个数据处理的Enumeratee。
现在Enumerator+Enumeratee+Iteratee从功能上越来越像fs2了,当然了,Iteratee就是一个流工具库。我们已经选择了fs2,因为它可以支持灵活的并行运算,所以再深入讨论Iteratee就没什么意义了。
以上是关于FunDA- Reactive Streams:Play with IterateesEnumerator and Enumeratees的主要内容,如果未能解决你的问题,请参考以下文章
JVM平台上的响应式流(Reactive Streams)规范