POJ 2079 Triangle [旋转卡壳]

Posted Candy?

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 2079 Triangle [旋转卡壳]相关的知识,希望对你有一定的参考价值。

Triangle
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 9525   Accepted: 2845

Description

Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

Output

For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

Sample Input

3
3 4
2 6
2 7
5
2 6
3 9
2 0
8 0
6 5
-1

Sample Output

0.50
27.00

Source


选三个点三角形面积最大

这三个点一定在凸包上

可以O(n),猜i,j,k单调,然后和旋转卡壳一样枚举i,先让k跑,再让j跑

事实证明貌似真的单调,discuss里的数据并不能卡掉我的程序....

 

注意:跑的时候用面积判断是不是跑到下一个

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=5e4+5;
const double eps=1e-8;

inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<0||c>9){if(c==-)f=-1; c=getchar();}
    while(c>=0&&c<=9){x=x*10+c-0; c=getchar();}
    return x*f;
}

inline int sgn(double x){
    if(abs(x)<eps) return 0;
    else return x<0?-1:1;
}

struct Vector{
    double x,y;
    Vector(double a=0,double b=0):x(a),y(b){}
    bool operator <(const Vector &a)const{
        return sgn(x-a.x)<0||(sgn(x-a.x)==0&&sgn(y-a.y)<0);
    }
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==0&&sgn(a.y-b.y)==0;}
double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}

double Len(Vector a){return sqrt(Dot(a,a));}
double Len2(Vector a){return Dot(a,a);}
double DisTL(Point p,Point a,Point b){
    Vector v1=p-a,v2=b-a;
    return abs(Cross(v1,v2)/Len(v2));
}
int ConvexHull(Point p[],int n,Point ch[]){
    sort(p+1,p+1+n);
    int m=0;
    for(int i=1;i<=n;i++){
        while(m>1&&sgn(Cross(ch[m]-ch[m-1],p[i]-ch[m-1]))<=0) m--;
        ch[++m]=p[i];
    }
    int k=m;
    for(int i=n-1;i>=1;i--){
        while(m>k&&sgn(Cross(ch[m]-ch[m-1],p[i]-ch[m-1]))<=0) m--;
        ch[++m]=p[i];
    }
    if(n>1) m--;
    return m;
}
double RotatingCalipers(Point p[],int n){
    if(n<=2) return 0;
    if(n==3) return abs(Cross(p[3]-p[1],p[2]-p[1]));
    int j=2,k=3;
    double ans=0;
    p[n+1]=p[1];
    for(int i=1;i<=n;i++){
        while(sgn(DisTL(p[k],p[i],p[j])-DisTL(p[k+1],p[i],p[j]))<=0) k=k%n+1;
        //while(sgn(abs(Cross(p[k]-p[i],p[k]-p[j]))-abs(Cross(p[k+1]-p[i],p[k+1]-p[j])))<=0) k=k%n+1;
        ans=max(ans,abs(Cross(p[k]-p[i],p[k]-p[j])));
        //while(sgn(DisTL(p[k],p[i],p[j])-DisTL(p[k],p[i],p[j+1]))<=0) j=j%n+1;
        while(abs(Cross(p[k]-p[i],p[k]-p[j]))-abs(Cross(p[k]-p[i],p[k]-p[j+1]))<=0) j=j%n+1;
        ans=max(ans,abs(Cross(p[k]-p[i],p[k]-p[j])));
    }
    return ans;
}

int n;
Point p[N],ch[N];
int main(int argc, const char * argv[]) {
    while(true){
        n=read();if(n==-1) break;
        for(int i=1;i<=n;i++) p[i].x=read(),p[i].y=read();
        n=ConvexHull(p,n,ch);
        double ans=RotatingCalipers(ch,n);
        printf("%.2f\n",ans/2);
    }
}

 

以上是关于POJ 2079 Triangle [旋转卡壳]的主要内容,如果未能解决你的问题,请参考以下文章

[poj] 2079 Triangle || 旋转卡壳

POJ2079 Triangle

●POJ 2079 Triangle

模板旋转卡壳求 面积最大的三角形 poj2079

求最大三角形——poj2079

POJ2079:Triangle——题解