spoj 375 Query on a tree (树链剖分)

Posted 贱人方

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了spoj 375 Query on a tree (树链剖分)相关的知识,希望对你有一定的参考价值。

Query on a tree

You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

We will ask you to perfrom some instructions of the following form:

  • CHANGE i ti : change the cost of the i-th edge to ti
    or
  • QUERY a b : ask for the maximum edge cost on the path from node a to node b

Input

The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000),
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
  • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "QUERY" operation, write one integer representing its result.

Example

Input:
1

3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE

Output:
1
3
第一次接触树链剖分,貌似是用来处理对树的边权的多次询问,然后对边权进行编号,转化为节点之间的询问。具体关于树链剖分的解析见 http://blog.csdn.net/acdreamers/article/details/10591443
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define lson(x) ((x<<1))
#define rson(x) ((x<<1)+1)
using namespace std;
typedef long long ll;
const int N=1e5+50;
const int M=N*N+10;
int dep[N],siz[N],fa[N],id[N],son[N],val[N],top[N]; //top 最近的重链父节点
int num;
vector<int> v[N];
struct tree {
    int x,y,val;
    void read() {
        scanf("%d%d%d",&x,&y,&val);
    }
};
tree e[N];
void dfs1(int u, int f, int d) {
    dep[u] = d;
    siz[u] = 1;
    son[u] = 0;
    fa[u] = f;
    for (int i = 0; i < v[u].size(); i++) {
        int ff = v[u][i];
        if (ff == f) continue;
        dfs1(ff, u, d + 1);
        siz[u] += siz[ff];
        if (siz[son[u]] < siz[ff])
            son[u] = ff;
    }
}
void dfs2(int u, int tp) {
    top[u] = tp;
    id[u] = ++num;
    if (son[u]) dfs2(son[u], tp);
    for (int i = 0; i < v[u].size(); i++) {
        int ff = v[u][i];
        if (ff == fa[u] || ff == son[u]) continue;
        dfs2(ff, ff);
    }
}

struct Tree {
    int l,r,val;
};
Tree tree[4*N];
void pushup(int x) {
    tree[x].val = max(tree[lson(x)].val, tree[rson(x)].val);
}

void build(int l,int r,int v) {
    tree[v].l=l;
    tree[v].r=r;
    if(l==r) {
        tree[v].val = val[l];
        return ;
    }
    int mid=(l+r)>>1;
    build(l,mid,v*2);
    build(mid+1,r,v*2+1);
    pushup(v);
}
void update(int o,int v,int val) { //log(n)
    if(tree[o].l==tree[o].r) {
        tree[o].val = val;
        return ;
    }
    int mid = (tree[o].l+tree[o].r)/2;
    if(v<=mid)
        update(o*2,v,val);
    else
        update(o*2+1,v,val);
    pushup(o);
}
int query(int x,int l, int r) {
    if (tree[x].l >= l && tree[x].r <= r) {
        return tree[x].val;
    }
    int mid = (tree[x].l + tree[x].r) / 2;
    int ans = 0;
    if (l <= mid) ans = max(ans, query(lson(x),l,r));
    if (r > mid) ans = max(ans, query(rson(x),l,r));
    return ans;
}

int Yougth(int u, int v) {
    int tp1 = top[u], tp2 = top[v];
    int ans = 0;
    while (tp1 != tp2) {
        if (dep[tp1] < dep[tp2]) {
            swap(tp1, tp2);
            swap(u, v);
        }
        ans = max(query(1,id[tp1], id[u]), ans);
        u = fa[tp1];
        tp1 = top[u];
    }
    if (u == v) return ans;
    if (dep[u] > dep[v]) swap(u, v);
    ans = max(query(1,id[son[u]], id[v]), ans);
    return ans;
}
void Clear(int n) {
    for(int i=1; i<=n; i++)
        v[i].clear();
}
int main() {
    int T;
    scanf("%d",&T);
    while(T--) {
        int n;
        scanf("%d",&n);
        for(int i=1; i<n; i++) {
            e[i].read();
            v[e[i].x].push_back(e[i].y);
            v[e[i].y].push_back(e[i].x);
        }
        num = 0;
        dfs1(1,0,1);
        dfs2(1,1);
        for (int i = 1; i < n; i++) {
            if (dep[e[i].x] < dep[e[i].y]) swap(e[i].x, e[i].y);
            val[id[e[i].x]] = e[i].val;
        }
        build(1,num,1);
        char s[200];
        while(~scanf("%s",&s) && s[0]!=D) {
            int x,y;
            scanf("%d%d",&x,&y);
            if(s[0]==Q)
                printf("%d\n",Yougth(x,y));
            if (s[0] == C)
                update(1,id[e[x].x],y);
        }
        Clear(n);
    }
    return 0;
}

 


以上是关于spoj 375 Query on a tree (树链剖分)的主要内容,如果未能解决你的问题,请参考以下文章

spoj 375 Query on a tree (树链剖分)

[SPOJ 375]Query on a tree

[spoj 375]QTREE - Query on a tree[树链剖分]

SPOJ 375 Query on a tree

SPOJ QTREE - Query on a tree

SPOJ QTREE - Query on a tree