Guess Number Higher or Lower II--困惑

Posted 沙_shine

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Guess Number Higher or Lower II--困惑相关的知识,希望对你有一定的参考价值。

今天,试着做了一下LeetCode OJ上面的第375道题:Guess Number Higher or Lower II

原题链接:https://leetcode.com/problems/guess-number-higher-or-lower-ii/

具体题目如下:

We are playing the Guess Game. The game is as follows:

 

I pick a number from 1 to n. You have to guess which number I picked.

Every time you guess wrong, I\'ll tell you whether the number I picked is higher or lower.

However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.

Example:

n = 10, I pick 8.

First round:  You guess 5, I tell you that it\'s higher. You pay $5.
Second round: You guess 7, I tell you that it\'s higher. You pay $7.
Third round:  You guess 9, I tell you that it\'s lower. You pay $9.

Game over. 8 is the number I picked.

You end up paying $5 + $7 + $9 = $21.

Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.

上网搜了一下,了解到用动态规划的思路解决。

这时,有两种思路(猜的数范围为:1-n):

dp[p][q]表示猜数的范围在p-q之间要保证赢需要的最小花费。此题为:dp[1][n].

思路一:

假设我们随意猜的数为k,

dp[1][n] = k + max{dp[1][k-1],dp[k+1][n]},

如此,最后得到了一个值,此值为在1-n区间猜数保证赢所需要的最小花费(最大花费?)。

在此过程中,我们不断的在寻求每个区间的最大花费,这样会不会导致所猜的数一直在改变,感觉这样求出的最大就太大了,而且也没有什么意义。

默默的感觉是自己想错了,所猜的数没有在变?

还有一个问题是:假设所猜的数不变,那么如果一直取子区间所需要的最大花费,那么最小又从哪里体现呢?

思路二:

在1-n个数里面,我们任意猜一个数(设为i),保证获胜所花的钱应该为 i + max(w(1 ,i-1), w(i+1 ,n)),这里w(x,y))表示猜范围在(x,y)的数保证能赢应花的钱,则我们依次遍历 1-n作为猜的数,求出其中的最小值即为答案,即最小的最大值问题。

以上是关于Guess Number Higher or Lower II--困惑的主要内容,如果未能解决你的问题,请参考以下文章

LeetCode Guess Number Higher or Lower II

374. Guess Number Higher or Lower

374. Guess Number Higher or Lower

374. Guess Number Higher or Lower

374. Guess Number Higher or Lower

374. Guess Number Higher or Lower