[转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR
Posted Crysaty
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR相关的知识,希望对你有一定的参考价值。
Theano下用CNN(卷积神经网络)做车牌中文字符OCR
原文地址:http://m.blog.csdn.net/article/details?id=50989742
之前时间一直在看 Michael Nielsen 先生的 Deep Learning 教程。
用了他的代码在theano下测试了下中文车牌字符的识别。由于我没有GPU,简单的在进行了16个epoch之后,识别率达到了 98.41% ,由于图像本来质量就不高,达到这个识别率,效果挺不错了。
一共 31 类 车牌中文字符数据来源于中文车牌识别项目 EasyPR 的数据集 . 由于数据集分布很不均匀。可能会导致个别类别拟合不一致,而降低识别率。所以使用随机轻微扭曲图像的方式来生成新的数据以保证数据集各个类目的数量的均衡。
下面是用于轻微扭曲图像来生成更多样本的函数。
def rotRandrom(img,factor,size): """ 使图像轻微的畸变 img 输入图像 factor 畸变的参数 size 为图片的目标尺寸 """ img = img.reshape(size); shape = size; pts1 = np.float32([[0,0],[0,shape[0]],[shape[1],0],[shape[1],shape[0]]]) pts2 = np.float32([[r(factor),r(factor)],[0,shape[0]-r(factor)],[shape[1]-r(factor),0],[shape[1]-r(factor),shape[0]-r(factor)]]) M = cv2.getPerspectiveTransform(pts1,pts2); dst = cv2.warpPerspective(img,M,(shape[0],shape[1])); return dst.ravel();
在训练的时候 使用的CNN结构如下
激活函数都为 ReLu
Conv(kernel size 5*5 ) * 25个 feature map->
Pooling 2*2 ->
Conv(kernel size 5*5) * 16个feature map->
Pooling 2*2 ->
FullConnectedLayer 120 个 Neurons ->
FullConnectedLayer 84个 Neurons ->
Softmax Output 31类
import network3 from network3 import Network from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer from network3 import ReLU training_data, validation_data, test_data= network3.load_data_cPickle("./data.pkl") mini_batch_size = 10
net = Network([ ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), filter_shape=(25, 1, 5, 5), poolsize=(2, 2), activation_fn=ReLU), ConvPoolLayer(image_shape=(mini_batch_size, 25, 12, 12), filter_shape=(16, 25, 5, 5), poolsize=(2, 2), activation_fn=ReLU), FullyConnectedLayer(n_in=16*4*4, n_out=120, activation_fn=ReLU), FullyConnectedLayer(n_in=120, n_out=84, activation_fn=ReLU), SoftmaxLayer(n_in=84, n_out=31)], mini_batch_size )
net.SGD(training_data, 60, mini_batch_size, 0.03, validation_data, test_data, lmbda=0.1)
这个函数用于制作自己的数据。
def make_dataset(dirn): set = []; labels = [] ; def findinside(dirname,code,): print "code",code; print "dirname",dirname; for parent,dirnames,filenames in os.walk(dirname): adder = 1400 - len(filenames) len_d = len(filenames) for filename in filenames: path =parent+"/"+filename if(path.endswith(".jpg")): img = cv2.imread(path,cv2.CV_LOAD_IMAGE_GRAYSCALE); img = cv2.resize(img,(28,28)); img = img.astype(np.float32)/255; set.append(img.ravel()); labels.append(code); for i in range(adder): c_index = int(np.random.rand() * len_d); l_set = len(set) set.append(rotrandom.rotRandrom( set[l_set-len_d + c_index],0.88,(28,28))); labels.append(code); print len(set),dirname,len(filenames) for parent,dirnames,filenames in os.walk(dirn): num = len(dirnames); for i in range(num): c_path = dir_chars + "/"+ dirnames[i]; findinside(c_path,i); shuffle = np.random.permutation(len(set)); print len(set) set = np.array(set); labels = np.array(labels); set, labels = set[shuffle], labels[shuffle] train_n = int(0.9*len(set)) training_set,test_set = np.split(set, [train_n]) training_labels, test_labels = np.split(labels, [train_n]) print training_labels validation_set = test_set.copy(); validation_labels = test_set.copy(); training_data = [training_set,training_labels] validation_data = [validation_set,validation_labels] test_data = [test_set,test_labels] data = [ training_data, validation_data, test_data]; fileid = open("./data.pkl","wb") cPickle.dump(data,fileid) dir_chars = "./charsChinese" make_dataset(dir_chars);
在进行了第14个epoch之后获得了 98.41% 训练时间大概在10分钟左右。
Training mini-batch number 0 Training mini-batch number 1000 Training mini-batch number 2000 Training mini-batch number 3000 Epoch 0: validation accuracy 89.15% This is the best validation accuracy to date. The corresponding test accuracy is 89.15% Training mini-batch number 4000 Training mini-batch number 5000 Training mini-batch number 6000 Training mini-batch number 7000 Epoch 1: validation accuracy 94.65% This is the best validation accuracy to date. The corresponding test accuracy is 94.65% Training mini-batch number 8000 Training mini-batch number 9000 Training mini-batch number 10000 Training mini-batch number 11000 Epoch 2: validation accuracy 95.44% This is the best validation accuracy to date. The corresponding test accuracy is 95.44% Training mini-batch number 12000 Training mini-batch number 13000 Training mini-batch number 14000 Training mini-batch number 15000 Epoch 3: validation accuracy 96.13% This is the best validation accuracy to date. The corresponding test accuracy is 96.13% Training mini-batch number 16000 Training mini-batch number 17000 Training mini-batch number 18000 Training mini-batch number 19000 Epoch 4: validation accuracy 96.91% This is the best validation accuracy to date. The corresponding test accuracy is 96.91% Training mini-batch number 20000 Training mini-batch number 21000 Training mini-batch number 22000 Training mini-batch number 23000 Epoch 5: validation accuracy 96.52% Training mini-batch number 24000 Training mini-batch number 25000 Training mini-batch number 26000 Training mini-batch number 27000 Epoch 6: validation accuracy 96.87% Training mini-batch number 28000 Training mini-batch number 29000 Training mini-batch number 30000 Training mini-batch number 31000 Epoch 7: validation accuracy 96.87% Training mini-batch number 32000 Training mini-batch number 33000 Training mini-batch number 34000 Training mini-batch number 35000 Epoch 8: validation accuracy 97.58% This is the best validation accuracy to date. The corresponding test accuracy is 97.58% Training mini-batch number 36000 Training mini-batch number 37000 Training mini-batch number 38000 Training mini-batch number 39000 Epoch 9: validation accuracy 97.49% Training mini-batch number 40000 Training mini-batch number 41000 Training mini-batch number 42000 Epoch 10: validation accuracy 97.60% This is the best validation accuracy to date. The corresponding test accuracy is 97.60% Training mini-batch number 43000 Training mini-batch number 44000 Training mini-batch number 45000 Training mini-batch number 46000 Epoch 11: validation accuracy 97.93% This is the best validation accuracy to date. The corresponding test accuracy is 97.93% Training mini-batch number 47000 Training mini-batch number 48000 Training mini-batch number 49000 Training mini-batch number 50000 Epoch 12: validation accuracy 97.83% Training mini-batch number 51000 Training mini-batch number 52000 Training mini-batch number 53000 Training mini-batch number 54000 Epoch 13: validation accuracy 98.04% This is the best validation accuracy to date. The corresponding test accuracy is 98.04% Training mini-batch number 55000 Training mini-batch number 56000 Training mini-batch number 57000 Training mini-batch number 58000 Epoch 14: validation accuracy 98.20% This is the best validation accuracy to date. The corresponding test accuracy is 98.20% Training mini-batch number 59000 Training mini-batch number 60000 Training mini-batch number 61000 Training mini-batch number 62000 Epoch 15: validation accuracy 97.86% Training mini-batch number 63000 Training mini-batch number 64000 Training mini-batch number 65000 Training mini-batch number 66000 Epoch 16: validation accuracy 98.41% This is the best validation accuracy to date. The corresponding test accuracy is 98.41%
以上是关于[转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR的主要内容,如果未能解决你的问题,请参考以下文章