乘法逆元(转)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了乘法逆元(转)相关的知识,希望对你有一定的参考价值。
定义:满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。
为什么要有乘法逆元呢?
当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。
我们可以通过求b关于p的乘法逆元k,将a乘上k再模p,即(a*k) mod p。其结果与(a/b) mod p等价。
证:
根据b*k≡1 (mod p)有b*k=p*x+1。
k=(p*x+1)/b。
把k代入(a*k) mod p,得:(a*(p*x+1)/b) mod p
=((a*p*x)/b+a/b) mod p
=[((a*p*x)/b) mod p +(a/b)] mod p
=[(p*(a*x)/b) mod p +(a/b)] mod p
//p*[(a*x)/b] mod p=0
所以原式等于:(a/b) mod p
以上是关于乘法逆元(转)的主要内容,如果未能解决你的问题,请参考以下文章