欧拉公式的三种形式

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了欧拉公式的三种形式相关的知识,希望对你有一定的参考价值。

参考技术A

欧拉公式的三种形式如下:R+V-E=2,在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理,它于1640年由Descartes首先给出证明,后来Euler于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理。


欧拉公式又称为欧拉定理,也称为尤拉公式,是用在复分析领域的公式,欧拉公式将三角函数与复数指数函数相关联,之所以叫作欧拉公式,那是因为欧拉公式是由莱昂哈德·欧拉提出来的,所以用他的名字进行了命名。 


尤拉公式提出,对任意实数 x,都存在其中 e是自然对数的底数, i是虚数单位,而  \\cos和  \\sin则是余弦、正弦对应的三角函数,参数 x则以弧度为单位。这一复数指数函数有时还写作 cis(x)。由于该公式在 x为复数时仍然成立,所以也有人将这一更通用的版本称为尤拉公式。


为什么欧拉公式被称为世界上最完美的公式了?

欧拉公式的巧妙之处在于,它没有任何多余的内容,将数学中最基本的e、i、π放在了同一个式子中,同时加入了数学也是哲学中最重要的0和1,再以简单的加号相连。高斯曾经说:“一个人第一次看到这个公式而不感到它的魅力,他不可能成为数学家。” 虽然不敢肯定她是世界上“最伟大公式",但是可以肯定它是最完美的数学公式之一。

世界上最伟大的公式:欧拉公式(道尽数学的美好)

参考技术A

欧拉 公式 是世界上最伟大的 公式 、最完美的公式,被誉上帝公式。将e、π、i、乘法单位元1、加法单位元0这五个重要的数学元素囊括其中,在数学爱好者眼里,一言道尽了数学的美好。那么欧拉公式怎么来的?欧拉公式是什么?欧拉公式有什么用?下面就为大家带来详细介绍。

世界上最伟大的公式,欧拉公式

欧拉公式:R+ V- E= 2

在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则 R+ V- E= 2,这就是欧拉定理。1640年由Descartes(笛卡尔)首先给出证明,1752年Euler(欧拉)又独立地给出证明,因此我们将它叫做欧拉公式。有人问欧拉公式英语怎么说?英语是Euler's formula。

莱昂哈德·欧拉

欧拉公式的证明这欧拉是瑞士数学家、自然科学家。是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,还写了大量的力学、分析学、几何学、变分法等的课本。许多都成为了数学界中的经典著作。此外欧拉还涉及建筑学、弹道学、航海学等领域。

欧拉公式的意义是什么

许多人可能不了解,既然欧拉公式被誉为上帝公式,最完美的公式,那么它的意义是什么呢?想要知道欧拉公式的意义,首先我们需要清除它的证明和推导。

欧拉公式的证明

1、当 R= 2时 ,由说明 1,这两个区域可想象为 以赤道为边界的两个半球面 ,赤道上有两个“顶点” 将赤道分成两条“边界”,即 R= 2,V= 2,E= 2;于是 R+ V- E= 2,欧拉定理成立.。

2、设 R= m(m≥ 2)时欧拉定理成立,下面证明 R= m+ 1时欧拉定理也成立 。

由说明 2,我们在 R= m+ 1的地图上任选一个 区域 X ,则 X 必有与它如此相邻的区域Y ,使得在去掉 X 和 Y 之间的唯一一条边界后,地图上只有m 个区域了;在去掉 X 和 Y 之间的边界后,若原该边界两端 的顶点现在都还是3条或3条以上边界的顶点,则该顶点保留,同时其他的边界数不变;若原该边界一端或两端的顶点现在成为2条边界的顶点,则去掉该顶点,该顶点两边的两条边界便成为一条边界 。于 是 ,在去掉 X 和 Y之间的唯一一条边界时只有三种情况:

①减少一个区域和一条边界;

②减少一个区域、一个顶点和两条边界;

③减少一个区域、两个顶点和三条边界;

即在去掉 X 和 Y 之间的边界时,不论何种情况都必定有“减少的区域数+减少的顶点数=减少的边界数”我们将上述过程反过来 (即将 X 和 Y之间去掉的边 界又照原样画上) ,就又成为R= m+ 1的地图了,在这一过程中必然是“增加的区域数+ 增加的顶点数= 增加的边界数”。

因此,若 R= m (m≥2)时欧拉定理成立,则 R= m+ 1时欧拉定理也成立.。

由1和2可知,对于任何正整数R≥2,欧拉定理成立。

欧拉公式的推导

这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π;两个单位:虚数单位i和自然数的单位1;以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”。

因此欧拉公式的意义不局限于数学,信号处理,它将能解释一些物理概念和规律。例如,光速,暗物质等。

改变世界的十个公式

1、欧拉公式

2、麦克斯韦方程组

3、牛顿第二定律

4、勾股定理

5、薛定谔方程

6、质能方程

7、德布罗意方程组

8、1+1=2

9、傅立叶变换

10、圆的周长公式

详细》》世界上最伟大的十个公式

以上是关于欧拉公式的三种形式的主要内容,如果未能解决你的问题,请参考以下文章

世界上最伟大的公式:欧拉公式(道尽数学的美好)

欧拉定理公式

数值分析:用改进欧拉法解微分方程初值问题(vf编程) 100

用改进的欧拉公式求初值问题!如能解答,万分感谢!

欧拉函数计算公式是啥?

点边面——欧拉公式