POJ2955(区间DP)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ2955(区间DP)相关的知识,希望对你有一定的参考价值。

Brackets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5083   Accepted: 2733

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char buf[105];
int dp[105][105];
int main()
{
    while(scanf("%s",buf)!=EOF&&buf[0]!=e)
    {
        memset(dp,0,sizeof(dp));
        int len=strlen(buf);
        
        for(int l=1;l<len;l++)//区间长度
        {
            for(int i=0,j=l;j<len;i++,j++)
            {
                if((buf[i]==(&&buf[j]==))||(buf[i]==[&&buf[j]==]))
                    dp[i][j]=dp[i+1][j-1]+2;
                for(int k=i+1;k<=j-1;k++)//"()[]()" dp[i+1][j-1]=2 而dp[i][j]=6
                    dp[i][j]=max(dp[i][j],dp[i][k]+dp[k][j]);
            }    
        }
        printf("%d\n",dp[0][len-1]);
    }
    
    return 0;
}

一种普适的字符串DP顺序

#include<cstdio>
#include
<cstring> #include<algorithm> using namespace std;char buf[105]; int dp[105][105]; int main() { while(scanf("%s",buf)&&buf[0]!=e) { memset(dp,0,sizeof(dp)); int len=strlen(buf); for(int i=0;i<len;i++) { for(int j=i-1;j>=0;j--) { if((buf[j]==(&&buf[i]==))||(buf[j]==[&&buf[i]==])) dp[j][i]=dp[j+1][i-1]+2; for(int x=j+1;x<i;x++) dp[j][i]=max(dp[j][i],dp[j][x]+dp[x][i]); } } printf("%d\n",dp[0][len-1]); } return 0; }

 

以上是关于POJ2955(区间DP)的主要内容,如果未能解决你的问题,请参考以下文章

poj-2955 (区间dp)

poj2955 区间dp

POJ2955区间DP

POJ 2955 Brackets 区间dp

POJ 2955:Brackets(区间DP)

POJ2955 Brackets(区间DP)