CodeForces 743C Vladik and fractions (数论)
Posted dwtfukgv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CodeForces 743C Vladik and fractions (数论)相关的知识,希望对你有一定的参考价值。
题意:给定n,求三个不同的数满足,2/n = 1/x + 1/y + 1/z。
析:首先1是没有解的,然后其他解都可以这样来表示 1/n, 1/(n+1), 1/(n*(n+1)),这三个解。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = (1<<20) + 5; const LL mod = 10000000000007; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int main(){ while(cin >> n){ if(n == 1) printf("-1\n"); else printf("%d %d %d\n", n, n+1, n*(n+1)); } return 0; }
以上是关于CodeForces 743C Vladik and fractions (数论)的主要内容,如果未能解决你的问题,请参考以下文章
Codeforces Round #416 (Div. 2) 811D Vladik and Favorite Game
(线段树+并查集) Codeforces Round #416 (Div. 2) E Vladik and Entertaining Flags
Codeforces Round #384 (Div. 2) E. Vladik and cards 状压dp