集合的检索:位图法

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了集合的检索:位图法相关的知识,希望对你有一定的参考价值。

                            位图法

位图(bit-map)法是一种逻辑上非常巧妙的描写叙述集合的方法。

如集合S={2,4,1,5,12},它用位图描写叙述就是 0110 1100 0000 1000,两个字节就可以描写叙述S,左边是低阶位。用bitset<16>存储的话就是{[15]、[14]、...[1]、[0]}={0001000000110110}。

用位图对集合进行描写叙述后,就非常方便进行集合的运算,如交、并和差。

以下来演示详细操作

集合S={1,2,4,5}。集合T={2,5,8,10}

集合S的位图是 0110110000000000

集合T的位图是 0010010010100000

求S与T的交集即是 S&T=0010010000000000={2,5}

求S与T的并集即是 S|T=0110110010100000={1,2,4,5,8,10}

求S与T的差集即是 S&~T=(0110110000000000)&(1101101101011111)=0100100000000000={1,4}

以上样例的完整代码例如以下

#include<iostream>
#include<bitset>
using namespace std;
int main()
{
	cout << "------位图法---by David---" << endl;
	int S[] = { 1, 2, 4, 5 };
	int T[] = { 2, 5, 8, 10 };

	bitset<16> s, t;
	s.reset();
	t.reset();
	int size_s, size_t, i;
	size_s = sizeof(S) / sizeof(int);
	size_t = sizeof(T) / sizeof(int);
	cout << "集合S" << endl;
	for (i = 0; i < size_s; i++)
	{
		cout << S[i] << " ";
		s.set(S[i]);
	}
	cout << endl;
	cout << "集合T" << endl;
	for (i = 0; i < size_t; i++)
	{
		cout << T[i] << " " ;
		t.set(T[i]);
	}
	cout << endl << endl;

	//求交集
	bitset<16> r1(s.to_ulong() & t.to_ulong());
	//求并集
	bitset<16> r2(s.to_ulong() | t.to_ulong());
	//求差集
	bitset<16> r3(s.to_ulong() & (~t.to_ulong()));

	cout << "交集" << endl;
	for (i = 0; i < 16; i++)
	if (r1[i])
		cout << i << " ";
	cout << endl;
	cout << "并集" << endl;
	for (i = 0; i < 16; i++)
	if (r2[i])
		cout << i << " ";
	cout << endl;
	cout << "差集" << endl;
	for (i = 0; i < 16; i++)
	if (r3[i])
		cout << i << " ";
	cout << endl;
	system("pause");
	return 0;
}
执行

技术分享


专栏文件夹












以上是关于集合的检索:位图法的主要内容,如果未能解决你的问题,请参考以下文章

几百万行代码中有重复的方法,怎么找到重复方法功能?

android-如何从标记位图开始共享元素过渡?

Android:从数据库中检索位图的问题

布隆过滤器个人认识

如何从数据库中检索位图图像?

将位图从片段保存到内部/外部存储[关闭]