VC Dimension -衡量模型与样本的复杂度

Posted nolonely

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了VC Dimension -衡量模型与样本的复杂度相关的知识,希望对你有一定的参考价值。

(1)定义VC Dimension:

dichotomies数量的上限是成长函数,成长函数的上限是边界函数:

所以VC Bound可以改写成:

下面我们定义VC Dimension:

对于某个备选函数集H,VC Dimension就是它所能shatter的最大数据个数N。VC Dimension = minimum break point - 1。所以在VC Bound中,(2N)^(k-1)可以替换为(2N)^(VC Dimension)。VC Dimension与学习算法A,输入分布P,目标函数f均无关。

(2)PLA的VC Dimension  

1D的PLA最多shatter2个点,所以VC Dimension = 2;      

2D的PLA最多shatter3个点,所以VC Dimension = 3;                                                       

猜测dD的PLA,VC Dimension会不会等于d+1? 只需证明dvc≥d+1并且 dvc≤d+1

  • 证明VC Dimension≥d+1,只需证明H可以shatter某些d+1个输入。

构造一组d+1个输入:

 X=

第一列灰色的1是对每个输入提高1维的操作,这个是一个d+1维的方阵,对角线全部是1,所以该矩阵可逆。即对于任意一种输出,我们总能找到一个备选函数使得

 

图2 

即这一组输入的所有dichotomies都被穷尽了,所以VC Dimension≥d+1得证

  • 证明VCDimension≤d+1,只需证H不能shatter任何d+2个输入

在2D情形下构造一组4个输入:

图3

所以 x4 = x3 + x2 - x1

 

以上是关于VC Dimension -衡量模型与样本的复杂度的主要内容,如果未能解决你的问题,请参考以下文章

使用Dimension类和Point类设置窗体大小和显示位置

csharp Moves_any_dimension.cs

Android Gradle 插件ProductFlavor 配置 ( consumerProguardFiles 配置 | dimension 配置 )

SSAS parent/child dimension

csharp Moves_any_dimension_O_k.cs

Division and Recursion--find the nearest points in two dimension