操作系统第四章【2】内存空间管理---连续
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了操作系统第四章【2】内存空间管理---连续相关的知识,希望对你有一定的参考价值。
参考技术A 内存分为系统区和用户区两部分:系统区:仅提供给OS使用,通常放在内存低址部分
用户区:除系统区以外的全部内存空间,提供给用户使用。
最简单的一种存储管理方式,只能用于单用户、单任务的操作系统中。
优点:易于管理。
缺点:对要求内存空间少的程序,造成内存浪费;程序全部装入,很少使用的程序部分也占用内存。
把内存分为一些大小相等或不等的分区(partition),每个应用进程占用一个分区。操作系统占用其中一个分区。
u提高:支持多个程序并发执行,适用于多道程序系统和分时系统。最早的多道程序存储管理方式。
划分为几个分区,便只允许几道作业并发
1如何划分分区大小:
n分区大小相等:只适合于多个相同程序的并发执行(处理多个类型相同的对象)。缺乏灵活性。
n分区大小不等:多个小分区、适量的中等分区、少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。
2需要的数据结构
建立一记录相关信息的分区表(或分区链表),表项有: 起始位置 大小 状态
分区表中,表项值随着内存的分配和释放而动态改变
3程序分配内存的过程:
也可将分区表分为两个表格:空闲分区表/占用分区表。从而减小每个表格长度。
检索算法:空闲分区表可能按不同分配算法采用不同方式对表项排序(将分区按大小排队或按分区地址高低排序)。
过程:检索空闲分区表;找出一个满足要求且尚未分配的分区,分配给请求程序;若未找到大小足够的分区,则拒绝为该用户程序分配内存。
固定分配的不足:
内碎片(一个分区内的剩余空间)造成浪费
分区总数固定,限制并发执行的程序数目。
(3)动态分区分配
分区的大小不固定:在装入程序时根据进程实际需要,动态分配内存空间,即——需要多少划分多少。
空闲分区表项:从1项到n项:
内存会从初始的一个大分区不断被划分、回收从而形成内存中的多个分区。
动态分区分配
优点:并发进程数没有固定数的限制,不产生内碎片。
缺点:有外碎片(分区间无法利用的空间)
1)数据结构
①空闲分区表:
•记录每个空闲分区的情况。
•每个空闲分区对应一个表目,包括分区序号、分区始址及分区的大小等数据项。
②空闲分区链:
•每个分区的起始部分,设置用于控制分区分配的信息,及用于链接各分区的前向指针;
•分区尾部则设置一后向指针,在分区末尾重复设置状态位和分区大小表目方便检索。
2)分区分配算法
动态分区方式,分区多、大小差异各不相同,此时把一个新作业装入内存,更需选择一个合适的分配算法,从空闲分区表/链中选出一合适分区
①首次适应算法FF
②循环首次适应算法
③最佳适应算法
④最差适应算法
⑤快速适应算法
①首次适应算法FF(first-fit)
1.空闲分区排序:以地址递增的次序链接。
2.检索:分配内存时,从链首开始顺序查找直至找到一个大小能满足要求的空闲分区;
3.分配:从该分区中划出一块作业要求大小的内存空间分配给请求者,余下的空闲分区大小改变仍留在空闲链中。
u若从头到尾检索不到满足要求的分区则分配失败
优点:优先利用内存低址部分,保留了高地址部分的大空闲区;
缺点:但低址部分不断划分,会产生较多小碎片;而且每次查找从低址部分开始,会逐渐增加查找开销。
②循环首次适应算法(next-fit)
1.空闲分区排序:按地址
2.检索:从上次找到的空闲分区的下一个空闲分区开始查找,直到找到一个能满足要求的空闲分区。为实现算法,需要:
©设置一个起始查寻指针
©采用循环查找方式
3.分配:分出需要的大小
优点:空闲分区分布均匀,减少查找开销
缺点:缺乏大的空闲分区
③最佳适应算法 (best-fit)
总是把能满足要求、又是最小的空闲分区分配给作业,避免“大材小用”。
1.空闲分区排序:所有空闲分区按容量从小到大排序成空闲分区表或链。
2.检索:从表或链的头开始,找到的第一个满足的就分配
3.分配:分出需要的大小
缺点:每次找到最合适大小的分区割下的空闲区也总是最小,会产生许多难以利用的小空闲区(外碎片)
④最差适应算法/最坏匹配法(worst-fit): 基本不留下小空闲分区,但会出现缺乏较大的空闲分区的情况。
⑤快速适应算法
n根据进程常用空间大小进行划分,相同大小的串成一个链,需管理多个各种不同大小的分区的链表。进程需要时,从最接近大小需求的链中摘一个分区。类似的:伙伴算法
n能快速找到合适分区,但链表信息会很多;实际上是空间换时间。
3)分区分配操作
分配内存
找到满足需要的合适分区,划出进程需要的空间
s<=size,将整个分区分配给请求者
s> size,按请求的大小划出一块内存空间分配出去,余下部分留在空闲链中,将分配区首址返回给调用者。
回收内存
进程运行完毕释放内存时,系统根据回收区首址a,在空闲分区链(表)中找到相应插入点,根据情况修改空闲分区信息,可能会进行空闲分区的合并:
(4)动态重定位分区分配
——有紧凑功能的动态分区分配
用户程序在内存中移动,将空闲空间紧凑起来提高空间利用率。但必然需要地址变化,增加“重定位”工作。
(5)内存空间管理之对换
当内存空间还是满足不了需求时,引入“对换”思想:
把内存中暂时不能运行、或暂时不用的程序和数据调到外存上,以腾出足够的内存;把已具备运行条件的进程和进程所需要的程序和数据,调入内存。
u按对换单位分类:
Ø整体对换(或进程对换):以整个进程为单位(连续分配)
Ø页面对换或分段对换:以页或段为单位(离散分配)
内存连续分配管理方式
内存连续分配方式,是指为一个用户程序分配一个连续的内存空间。它主要包括单一连续分配、固定分区分配和动态分区分配。
这种方式的优点是简单、无外部碎片,不需要额外的技术支持。缺点是只能用于单用户、单任务的操作系统中,有内部碎片,存储器的利用率极低。
固定分区分配在划分分区时,有两种不同的方法,如上图所示。
为便于内存分配,通常将分区按大小排队,并为之建立一张分区说明表,其中各表项包括每个分区的起始地址、大小及状态(是否已分配),如下图(a)所示。当有用户程序要装入时,便检索该表,以找到合适的分区给予分配并将其状态置为”已分配”;未找到合适分区则拒绝为该用户程序分配内存。存储空间的分配情况如下图(b)所示。
这种分区方式存在两个问题:一是程序可能太大而放不进任何一个分区中,这时用户不得不使用覆盖技术来使用内存空间;二是主存利用率低,当程序小于固定分区大小时,也占用了一个完整的内存分区空间,这样分区内部有空间浪费,这种现象称为内部碎片。
固定分区是可用于多道程序设计最简单的存储分配,无外部碎片。固定分区分配很少用于现在通用的操作系统中,但在某些用于控制多个相同对象的控制系统中仍发挥着一定的作用。

图 固定分区说明表和内存分配情况

动态分区
如图所示,系统有64MB内存空间,其中低8MB固定分配给操作系统,其余为用户可用内存。开始时装入前三个进程,在它们分别分配到所需空间后,内存只剩下4MB,进程4无法装入。在某个时刻,内存中没有一个就绪进程,CPU出现空闲,操作系统就换出进程2,换入进程4。由于进程4比进程2小,这样在主存中就产生了一个6MB的内存块。之后CPU又出现空闲,而主存无法容纳进程2,操作系统就换出进程1,换入进程2。
动态分区在开始分配时是很好的,但是之后会导致内存中出现许多小的内存块。随着时间的推移,内存中会产生越来越多的碎片(上图中最后的4MB和中间的6MB,且随着进程的换入/换出,很可能会出现更多更小的内存块),内存的利用率随之下降。这些小的内存块称为外部碎片,指在所有分区外的存储空间会变成越来越多的碎片,这与固定分区中的内部碎片正好相对。克服外部碎片可以通过紧凑(Compaction)技术来解决,就是操作系统不时地对进程进行移动和整理。但是这需要动态重定位寄存器的支持,且相对费时。紧凑的过程实际上类似于Windows系统中的磁盘整理程序,只不过后者是对外存空间的紧凑。
在进程装入或换入主存时,如果内存中有多个足够大的空闲块,操作系统必须确定分配哪个内存块给进程使用,这就是动态分区的分配策略,考虑以下几种算法:
在这几种方法中,首次适应算法不仅是最简单的,而且通常也是最好和最快的。在UNIX 系统的最初版本中,就是使用首次适应算法为进程分配内存空间,其中使用数组的数据结构 (而非链表)来实现。不过,首次适应算法会使得内存的低地址部分出现很多小的空闲分区,而每次分配查找时,都要经过这些分区,因此也增加了查找的开销。
邻近适应算法试图解决这个问题,但实际上,它常常会导致在内存的末尾分配空间分裂成小碎片(因为在一遍扫描中,内存前面部分使用后再释放时,不会参与分配)。它通常比首次适应算法的结果要差。
最佳适应算法虽然称为“最佳”,但是性能通常很差,因为每次最佳的分配会留下很小的难以利用的内存块,它会产生最多的外部碎片。
最坏适应算法与最佳适应算法相反,选择最大的可用块,这看起来最不容易产生碎片,但是却把最大的连续内存划分开,会很快导致没有可用的大的内存块,因此性能也非常差。
Kunth和Shore分别就前三种方法对内存空间的利用情况做了模拟实验,结果表明:
首次适应算法可能比最佳适应法效果好,而它们两者一定比最大适应法效果好。另外注意,在算法实现时,分配操作中最佳适应法和最大适应法需要对可用块进行排序或遍历查找,而首次适应法和邻近适应法只需要简单查找;回收操作中,当回收的块与原来的空闲块相邻时(有三种相邻的情况,比较复杂),需要将这些块合并。在算法实现时,使用数组或链表进行管理。除了内存的利用率,这里的算法开销也是操作系统设计需要考虑的一个因素。
以上三种内存分区管理方法有一共同特点,即用户进程(或作业)在主存中都是连续存放的。这里对它们进行比较和总结,见上表。
单一连续分配
内存在此方式下分为系统区和用户区,系统区仅提供给操作系统使用,通常在低地址部分;用户区是为用户提供的、除系统区之外的内存空间。这种方式无需进行内存保护。这种方式的优点是简单、无外部碎片,不需要额外的技术支持。缺点是只能用于单用户、单任务的操作系统中,有内部碎片,存储器的利用率极低。
固定分区分配
固定分区分配是最简单的一种多道程序存储管理方式,它将用户内存空间划分为若干个固定大小的区域,每个分区只装入一道作业。当有空闲分区时,便可以再从外存的后备作业队列中,选择适当大小的作业装入该分区,如此循环。
固定分区分配在划分分区时,有两种不同的方法,如上图所示。
- 分区大小相等:用于利用一台计算机去控制多个相同对象的场合,缺乏灵活性。
- 分区大小不等:划分为含有多个较小的分区、适量的中等分区及少量的大分区。
为便于内存分配,通常将分区按大小排队,并为之建立一张分区说明表,其中各表项包括每个分区的起始地址、大小及状态(是否已分配),如下图(a)所示。当有用户程序要装入时,便检索该表,以找到合适的分区给予分配并将其状态置为”已分配”;未找到合适分区则拒绝为该用户程序分配内存。存储空间的分配情况如下图(b)所示。
这种分区方式存在两个问题:一是程序可能太大而放不进任何一个分区中,这时用户不得不使用覆盖技术来使用内存空间;二是主存利用率低,当程序小于固定分区大小时,也占用了一个完整的内存分区空间,这样分区内部有空间浪费,这种现象称为内部碎片。
固定分区是可用于多道程序设计最简单的存储分配,无外部碎片。固定分区分配很少用于现在通用的操作系统中,但在某些用于控制多个相同对象的控制系统中仍发挥着一定的作用。

图 固定分区说明表和内存分配情况
动态分区分配
动态分区分配又称为可变分区分配,是一种动态划分内存的分区方法。这种分区方法不预先将内存划分,而是在进程装入内存时,根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。因此系统中分区的大小和数目是可变的。
动态分区
如图所示,系统有64MB内存空间,其中低8MB固定分配给操作系统,其余为用户可用内存。开始时装入前三个进程,在它们分别分配到所需空间后,内存只剩下4MB,进程4无法装入。在某个时刻,内存中没有一个就绪进程,CPU出现空闲,操作系统就换出进程2,换入进程4。由于进程4比进程2小,这样在主存中就产生了一个6MB的内存块。之后CPU又出现空闲,而主存无法容纳进程2,操作系统就换出进程1,换入进程2。
动态分区在开始分配时是很好的,但是之后会导致内存中出现许多小的内存块。随着时间的推移,内存中会产生越来越多的碎片(上图中最后的4MB和中间的6MB,且随着进程的换入/换出,很可能会出现更多更小的内存块),内存的利用率随之下降。这些小的内存块称为外部碎片,指在所有分区外的存储空间会变成越来越多的碎片,这与固定分区中的内部碎片正好相对。克服外部碎片可以通过紧凑(Compaction)技术来解决,就是操作系统不时地对进程进行移动和整理。但是这需要动态重定位寄存器的支持,且相对费时。紧凑的过程实际上类似于Windows系统中的磁盘整理程序,只不过后者是对外存空间的紧凑。
在进程装入或换入主存时,如果内存中有多个足够大的空闲块,操作系统必须确定分配哪个内存块给进程使用,这就是动态分区的分配策略,考虑以下几种算法:
- 首次适应(First Fit)算法:空闲分区以地址递增的次序链接。分配内存时顺序查找,找到大小能满足要求的第一个空闲分区。
- 最佳适应(Best Fit)算法:空闲分区按容量递增形成分区链,分配时找到第一个能满足要求的空闲分区。
- 最坏适应(Worst Fit)算法:又称最大适应(Largest Fit)算法,空闲分区以容量递减的次序链接。找到第一个能满足要求的空闲分区,也就是挑选出最大的分区。
- 邻近适应(Next Fit)算法:又称循环首次适应算法,由首次适应算法演变而成。不同之处是分配内存时从上次查找结束的位置开始继续查找。
在这几种方法中,首次适应算法不仅是最简单的,而且通常也是最好和最快的。在UNIX 系统的最初版本中,就是使用首次适应算法为进程分配内存空间,其中使用数组的数据结构 (而非链表)来实现。不过,首次适应算法会使得内存的低地址部分出现很多小的空闲分区,而每次分配查找时,都要经过这些分区,因此也增加了查找的开销。
邻近适应算法试图解决这个问题,但实际上,它常常会导致在内存的末尾分配空间分裂成小碎片(因为在一遍扫描中,内存前面部分使用后再释放时,不会参与分配)。它通常比首次适应算法的结果要差。
最佳适应算法虽然称为“最佳”,但是性能通常很差,因为每次最佳的分配会留下很小的难以利用的内存块,它会产生最多的外部碎片。
最坏适应算法与最佳适应算法相反,选择最大的可用块,这看起来最不容易产生碎片,但是却把最大的连续内存划分开,会很快导致没有可用的大的内存块,因此性能也非常差。
Kunth和Shore分别就前三种方法对内存空间的利用情况做了模拟实验,结果表明:
首次适应算法可能比最佳适应法效果好,而它们两者一定比最大适应法效果好。另外注意,在算法实现时,分配操作中最佳适应法和最大适应法需要对可用块进行排序或遍历查找,而首次适应法和邻近适应法只需要简单查找;回收操作中,当回收的块与原来的空闲块相邻时(有三种相邻的情况,比较复杂),需要将这些块合并。在算法实现时,使用数组或链表进行管理。除了内存的利用率,这里的算法开销也是操作系统设计需要考虑的一个因素。
作业道数 | 内部 碎片 | 外部 碎片 | 硬件支持 | 可用空 间管理 | 解决碎 片方法 | 解决空 间不足 | 提高作 业道数 | |
---|---|---|---|---|---|---|---|---|
单道连续 分配 |
1 | 有 | 无 | 界地址寄存器、越界 检查机构 |
-- | -- | 覆盖 | 交换 |
多道固定 连续分配 |
<=N (用户空间划 为N块) |
有 | 无 |
|
-- | -- | ||
多道可变连续分配 | — | 无 | 有 |
|
紧凑 |
以上三种内存分区管理方法有一共同特点,即用户进程(或作业)在主存中都是连续存放的。这里对它们进行比较和总结,见上表。
以上是关于操作系统第四章【2】内存空间管理---连续的主要内容,如果未能解决你的问题,请参考以下文章
408考研操作系统)第三章内存管理-第一节6:非连续分配管理方式之基本分页存储管理
(王道408考研操作系统)第三章内存管理-第一节6-1:非连续分配管理方式之基本分页存储管理
六操作系统——内存管理的概念(空间的分配与回收空间的扩充地址转换存储保护)
:内存管理 -- 内存空间的扩充(覆盖技术交换技术)连续分配管理方式(单一连续分配(系统区/用户区)固定分区分配动态分区分配)动态分区分配算法