Sample a balance dataset from imbalance dataset and save it(从不平衡数据中抽取平衡数据,并保存)

Posted 华东 博客

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Sample a balance dataset from imbalance dataset and save it(从不平衡数据中抽取平衡数据,并保存)相关的知识,希望对你有一定的参考价值。

 

有时我们在实际分类数据挖掘中经常会遇到,类别样本很不均衡,直接使用这种不均衡数据会影响一些模型的分类效果,如logistic regression,SVM等,一种解决办法就是对数据进行均衡采样,这里就提供了一个建议代码实现,要求输入和输出数据格式为Label+Tab+Features, 如Libsvm format

-1 1:0.875 2:-1 3:-0.333333 4:-0.509434 5:-0.347032 6:-1 7:1 8:-0.236641 9:1 10:-0.935484 11:-1 12:-0.333333 13:-1 
+1 1:0.166667 2:1 3:-0.333333 4:-0.433962 5:-0.383562 6:-1 7:-1 8:0.0687023 9:-1 10:-0.903226 11:-1 12:-1 13:1 
+1 1:0.708333 2:1 3:1 4:-0.320755 5:-0.105023 6:-1 7:1 8:-0.419847 9:-1 10:-0.225806 12:1 13:-1 
-1 1:0.583333 2:-1 3:0.333333 4:-0.603774 5:1 6:-1 7:1 8:0.358779 9:-1 10:-0.483871 12:-1 13:1 

 

用法 Usage:

Usage: {0} [options] dataset subclass_size [output]
options:
-s method : method of selection (default 0)
     0 -- over-sampling & under-sampling given subclass_size
     1 -- over-sampling (subclass_size: any value)
     2 -- under-sampling(subclass_size: any value)

 Bash example:

python SampleDataset.py -s 0 heart_scale 20 heart_scale.txt

这里s参数表示抽样的方法,

-s 0:Over sampling &Under sampling ,即对类别多的进行降采样,对类别少的进行重采样

-s 1: Over sampling 对类别少的进行重采样,采样后的每类样本数与最多的那一类一致

-s 2:Under sampling 对类别多的进行降采样,采样后的每类样本数与最少的那一类一值 

输入数据文件heart_scale

输出数据文件heart_scale.txt

 

下面是代码文件:SampleDataset.py:

#!/usr/bin/env python
from sklearn.datasets import load_svmlight_file
from sklearn.datasets import dump_svmlight_file
import numpy as np
from sklearn.utils import check_random_state
from scipy.sparse import hstack,vstack
import os, sys, math, random
from collections import defaultdict
if sys.version_info[0] >= 3:
    xrange = range

def exit_with_help(argv):
    print("""Usage: {0} [options] dataset subclass_size [output]
options:
-s method : method of selection (default 0)
     0 -- over-sampling & under-sampling given subclass_size
     1 -- over-sampling (subclass_size: any value)
     2 -- under-sampling(subclass_size: any value)

output : balance set file (optional)
If output is omitted, the subset will be printed on the screen.""".format(argv[0]))
    exit(1)

def process_options(argv):
    argc = len(argv)
    if argc < 3:
        exit_with_help(argv)

    # default method is over-sampling & under-sampling
    method = 0  
    BalanceSet_file = sys.stdout

    i = 1
    while i < argc:
        if argv[i][0] != "-":
            break
        if argv[i] == "-s":
            i = i + 1
            method = int(argv[i])
            if method not in [0,1,2]:
                print("Unknown selection method {0}".format(method))
                exit_with_help(argv)
        i = i + 1

    dataset = argv[i]  
    BalanceSet_size = int(argv[i+1])

    if i+2 < argc:
        BalanceSet_file = open(argv[i+2],‘w‘)

    return dataset, BalanceSet_size, method, BalanceSet_file

def stratified_selection(dataset, subset_size, method):
    labels = [line.split(None,1)[0] for line in open(dataset)]
    label_linenums = defaultdict(list)
    for i, label in enumerate(labels):
        label_linenums[label] += [i]

    l = len(labels)
    remaining = subset_size
    ret = []

    # classes with fewer data are sampled first; 
    label_list = sorted(label_linenums, key=lambda x: len(label_linenums[x]))
    min_class = label_list[0]
    maj_class = label_list[-1]
    min_class_num = len(label_linenums[min_class])
    maj_class_num = len(label_linenums[maj_class])
    random_state = check_random_state(42)

    for label in label_list:
        linenums = label_linenums[label]
        label_size = len(linenums)
        if  method == 0:
            if label_size<subset_size:
                ret += linenums
                subnum = subset_size-label_size
            else:
                subnum = subset_size
            ret += [linenums[i] for i in random_state.randint(low=0, high=label_size,size=subnum)]
        elif method == 1:
            if label == maj_class:
                ret += linenums
                continue
            else:
                ret += linenums
                subnum = maj_class_num-label_size                
                ret += [linenums[i] for i in random_state.randint(low=0, high=label_size,size=subnum)]
        elif method == 2:
            if label == min_class:
                ret += linenums
                continue
            else:
                subnum = min_class_num
                ret += [linenums[i] for i in random_state.randint(low=0, high=label_size,size=subnum)]
    random.shuffle(ret)
    return ret

def main(argv=sys.argv):
    dataset, subset_size, method, subset_file = process_options(argv)
    selected_lines = []

    selected_lines = stratified_selection(dataset, subset_size,method)

    #select instances based on selected_lines
    dataset = open(dataset,‘r‘)
    datalist = dataset.readlines()
    for i in selected_lines:
        subset_file.write(datalist[i])
    subset_file.close()

    dataset.close()

if __name__ == ‘__main__‘:
    main(sys.argv)

 

以上是关于Sample a balance dataset from imbalance dataset and save it(从不平衡数据中抽取平衡数据,并保存)的主要内容,如果未能解决你的问题,请参考以下文章

如何将 sample_weights 与 3D 医疗数据一起使用,而没有 model.fit(x=tf.data.Dataset) 导致无法挤压最后一个暗淡等错误

在sklearn中平均的SVM模型

李宏毅 机器学习 p5学习 笔记

李宏毅 机器学习 p5学习 笔记

Balanced Binary Tree

hadoop balancer