机器学习-Tensorflow安装与测试
Posted 脑机接口社区
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习-Tensorflow安装与测试相关的知识,希望对你有一定的参考价值。
安装、
# Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev
# Ubuntu/Linux 64-bit, CPU only, Python 2.7 $ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.12.0rc0-cp27-none-linux_x86_64.whl
# Python 2 $ sudo pip install --upgrade $TF_BINARY_URL # Python 3 $ sudo pip3 install --upgrade $TF_BINARY_URL
测试一、
$ python ... >>> import tensorflow as tf >>> hello = tf.constant(\'Hello, TensorFlow!\') >>> sess = tf.Session() >>> print(sess.run(hello)) Hello, TensorFlow! >>> a = tf.constant(10) >>> b = tf.constant(32) >>> print(sess.run(a + b)) 42 >>>
测试二、
import tensorflow as tf import numpy import matplotlib.pyplot as plt rng = numpy.random learning_rate = 0.01 training_epochs = 1000 display_step = 50 #数据集x train_X = numpy.asarray([3.3,4.4,5.5,7.997,5.654,.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,9.27,3.1]) #数据集y train_Y = numpy.asarray([1.7,2.76,3.366,2.596,2.53,1.221,1.694,1.573,3.465,1.65,2.09, 2.827,3.19,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] X = tf.placeholder("float") Y = tf.placeholder("float") W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") pred = tf.add(tf.mul(X, W), b) cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) # 训练数据 for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y): sess.run(optimizer, feed_dict={X: x, Y: y}) print "优化完成!" training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y}) print "Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), \'\\n\' #可视化显示 plt.plot(train_X, train_Y, \'ro\', label=\'Original data\') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label=\'Fitted line\') plt.legend() plt.show()
测试二效果:
更多技术干货请关注:
以上是关于机器学习-Tensorflow安装与测试的主要内容,如果未能解决你的问题,请参考以下文章