SD卡WAV音乐播放器(quartus11.0)(FAT32)(DE2-115)
Posted yf869778412
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SD卡WAV音乐播放器(quartus11.0)(FAT32)(DE2-115)相关的知识,希望对你有一定的参考价值。
准备工具:格式工厂,Windows录音机,SD卡(小于等于2G),音箱
首先,选一首MP3,用格式工场转化成WAV格式。可以看到转化后的文件变得很大,因为WAV就是AD采样值加个文件头,所以数据量巨大,这也是MP3压缩算法流行的原因。
将转化后的WAV文件用Windows录音机打开编辑,采样率设置为8Khz,16位立体声,然后写入到SD卡里,恩,这里提一句,可以写入任意数量的歌曲,我写的程序是播放完卡里所有的WAV文件。当然别放其他文件例如图片文件进去捣乱啊,文件系统里没有识别其他文件的过程,开学了,要忙活了就没做。
硬件搭建:
SD卡的部分就不说了,前面博客提过了。说说WM8731吧,我们管这个芯片叫霸气闪耀,因为它里面有24位的ADC和DAC,而且是CD音质,听起来感觉不错的。驱动芯片首先当然是看手册,50多页的手册,还凑合。我们关心的只有几个部分:DAC,控制接口,数据接口。先来看看它的框图:
由于我们是将SD卡里的数字数据读出来,写入DAC,所以我们不管ADC的部分,注意这三个红圈,上面的红圈是控制接口,是用户控制8731工作模式写命令的接口,接口采用I2C协议;右边的红圈是耳机输出,默认是静音,坑爹啊,这个设置一样要改,不然没声的。下面的红圈是数据接口,我们的数据数据从这里串行输入。好,明确了这些概念后,我们来看8731的控制寄存器。如下图:
8731一共11个寄存器,保守起见,每个都设置一遍最好。这里还有个坑爹的地方,开始看手册不细,被耍的够惨。这个复位寄存器,当我们写入复位命令后,8731就将所有的控制寄存器先写入0.本来一上电,8731会自己复位,并且自动配置寄存器的值,但是这个软件复位的效果和上电复位的不一样,上电复位后控制寄存器里的值不是0,而是一些默认的设置,软件复位后,所有的都是零了。
扯一扯I2C协议
I2C协议点对点传输还是比较简单的,不用考虑仲裁等乱七八糟的事。8731的I2C协议如下图所示:
注意8731的设备号是可变的,而DE2-115上已经将其固定为0X34了,最后一位是读写选择,8731是只写的,不能读,所以地址加上R/W位就是0X34。发送完8位设备地址加读写位后,接下来发送16位数据,前7位是8731内部寄存器的地址,后9位是寄存器配置的数据。每一个命令封装成24位的一帧,每次发送命令都要完整的发送:起始标志,设备号,读写位,7位寄存器地址,9位数据。
命令接口说完了,接下来是数据接口,这个有些麻烦。我们要写入串行的数据,就要自己写并转串的接口。数据写入有四种模式:左对齐,I2S,和右对齐,DSP模式。继续看手册:
左对齐模式,也是我采用的模式,数据在DACLRCK的下降沿后BCLK的第一个上升沿就有效。
I2S模式,数据会延迟一个BCLK才有效。
右对齐模式,就是数据最高位和DACLRCK的下降沿对齐。
不在以DACLRCK的高低电平来区分左右声道了。数据时连续的。
我们采用左对齐方式,用硬件去实现高速的并转串接口。在检测到DACLRCK的下降沿或者上升沿后,使能模16计数器,当计数器计满时,使计数使能无效。在计数过程中,将并行数据移位输出到DACDAT引脚上。模块代码如下:
/*
*this file is use to connect the dule port ram and 8731
*when the up edge of lrck,read from the ram,and when the down edge of lrck,increace the ram address
*when the up edge of bclk,shift the 64 regs,and the msb is out to the 8731 dacda pin
*/
module data_64
(
input clk,
input rst_n,
input [31:0]q,
input bclk,
input lrck,
output q_out,
output rd_en,
output [16:0]ram_addr
);
//**************************************************************************************************
//up and down edge of lrck detect module
reg latch0;
reg latch1;
always@(posedge clk or negedge rst_n)
begin
if(!rst_n)
begin
latch0<=1\'b0;
latch1<=1\'b0;
end
else
begin
latch0<=lrck;
latch1<=latch0;
end
end
wire up_detect;
wire down_detect;
assign up_detect=latch0 && (~latch1);
assign rd_en=up_detect;
assign down_detect=latch1 && (~latch0);
//****************************************************************************************************************
//up and down edge of bclk detect module
reg latch2;
reg latch3;
always@(posedge clk or negedge rst_n)
begin
if(!rst_n)
begin
latch2<=1\'b0;
latch3<=1\'b0;
end
else
begin
latch2<=bclk;
latch3<=latch2;
end
end
wire up;
wire down;
assign up=latch2 && (~latch3);
assign down=latch3 && (~latch2);
//************************************************************************************************************
//latch up_detect module,delay the up_detect for one clk for the data read from ram
reg write;
always@(posedge clk or negedge rst_n)
begin
if(!rst_n)
write<=1\'b0;
else
write<=up_detect;
end
//*************************************************************************************************************
//64 reg module
reg[31:0]data;
wire[23:0]gnd;
wire shift;
assign gnd=24\'b0;
assign shift=1\'b0;
always@(posedge clk or negedge rst_n)
begin
if(!rst_n)
data<=32\'b0;
else if(write)
data<=q[31:0];
else if(up && en)
data<={data[30:0],shift};
end
assign q_out=data[31];
//************************************************************************************************************
//ram addr generater
reg[16:0]addr;
always@(posedge clk or negedge rst_n)
begin
if(!rst_n)
addr<=17\'b0;
else if((addr==17\'b11111_1111_1111_1111) && (down_detect ||up_detect))
addr<=15\'b0;
else if(down_detect ||up_detect)
addr<=addr+1\'b1;
end
assign ram_addr=addr;
//************************************************************************************************************
//counter enable module
reg en;
always@(posedge clk or negedge rst_n)
begin
if(!rst_n)
en<=1\'b0;
else if(cnt_over)
en<=1\'b0;
else if(up_detect || down_detect)
en<=1\'b1;
end
//*************************************************************************************************************
//16 bits counter,count the BCLK posedge
reg[7:0]cnt;
wire cnt_over;
wire not_over;
always@(posedge clk or negedge rst_n)
begin
if(!rst_n)
begin
cnt<=8\'b0;
// cnt_over<=1\'b0;
end
else if((cnt==8\'d16) && en )
begin
cnt<=8\'b0;
// cnt_over<=1\'b1;
end
else if(en && up)
begin
cnt<=cnt+1\'b1;
// cnt_over<=1\'b0;
end
end
assign cnt_over=(cnt==8\'d16)?1\'b1:1\'b0;
assign not_over=~cnt_over;
endmodule
本来这个模块式用来从ram里读数据的,后来发现ram只能缓存很小的数据,就改用FIFO了,但是地址线没有去掉。
建立一个FIFO来缓冲数据,数据位宽为32位,1024*32bit大小,其实用256*32bit也可以的。利用FIFO里面的WRUSEW的最高位(就是FIFO一半满时的标记),来决定是否写入数据。如图:
写请求是软件发出的,宽度不确定,那么我们写一个模块来检测它的上升沿,在上升沿出现时,产生一个clk宽度的信号,来向fifo写入数据。clk为100M。
module wr_req_detect
(
input clk,
input rst_n,
input wr_req,
output wr_req_detect
);
reg latch0;
reg latch1;
reg latch2;
always@(posedge clk or negedge rst_n)
begin
if(!rst_n)
begin
latch0<=1\'b0;
latch1<=1\'b0;
latch2<=1\'b0;
end
else
begin
latch0<=wr_req;
latch1<=latch0;
latch2<=latch1;
end
end
assign wr_req_detect=latch0 && (~latch1);
endmodule
如果是assign wr_req_detect=latch0 && (~latch2);那么就是产生了2个clk宽度的写请求信号,具体原理不讲了,自己体会吧。
Nios系统的搭建就是在SD卡系统的基础上多了几个PIO,分别是I2C的两条线,还有FIFO的数据线和写请求线。注意一个问题,FIFO的读写时钟全部同步到系统时钟,即用全局时钟来控制全局,利用使能时钟解决跨时钟域问题,用一个100M的时钟去检测几M的时钟的上升下降沿自然是没有问题的。
硬件就这么多可说的。
软件部分,FAT32文件系统,读取WAV跟读取BMP没有什么区别,只是后缀名不同而已,注意文件名不要搞太长,控制在8个字节内。直接贴代码了,我C语言是自学的,写的很菜,因为当时学汇编学的太狠了,导致写出来的C程序跟汇编一个味道,冗长,但是易懂,一看就明白。
头文件:
/*
* sopc.h
*
* Created on: 2011-8-10
* Author: Fu-xiaoliang
*/
#ifndef SOPC_H_
#define SOPC_H_
#include "system.h"
#define _LED
typedef struct
{
unsigned long int DATA;
unsigned long int DIRECTION;
unsigned long int INTERRUPT_MASK;
unsigned long int EDGE_CAPTURE;
}PIO_STR;
#ifdef _LED
#define SD_DA ((PIO_STR *)SD_DA_BASE)
#define SD_CMD ((PIO_STR *)SD_CMD_BASE)
#define SD_CS ((PIO_STR *)SD_CS_N_BASE)
#define SD_CLK ((PIO_STR *)SD_CLK_BASE)
#define WR_ADDR ((PIO_STR *)WR_ADDR_BASE)
#define WR_CLK ((PIO_STR *)WR_CLK_BASE)
#define WR_DAT ((PIO_STR *)WR_DAT_BASE)
#define WR_EN ((PIO_STR *)WR_EN_BASE)
#define WR_USE_W ((PIO_STR *)WR_USE_W_BASE)
#define RD_EN ((PIO_STR *)RD_EN_BASE)
#define I2C_DAT ((PIO_STR *)I2C_DAT_BASE)
#define I2C_SCLK ((PIO_STR *)I2C_SCLK_BASE)
#define LED ((PIO_STR *)LED_BASE)
#define _SD
#endif
#ifdef _SD
#define data (SD_DA->DATA)
#define cmd (SD_CMD->DATA)
#define cs (SD_CS->DATA)
#define clk (SD_CLK->DATA)
#endif
#define uc unsigned char
#endif /* SOPC_H_ */
主函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
|
/* * "Hello World" example. * * This example prints \'Hello from Nios II\' to the STDOUT stream. It runs on * the Nios II \'standard\', \'full_featured\', \'fast\', and \'low_cost\' example * designs. It runs with or without the MicroC/OS-II RTOS and requires a STDOUT * device in your system\'s hardware. * The memory footprint of this hosted application is ~69 kbytes by default * using the standard reference design. * * For a reduced footprint version of this template, and an explanation of how * to reduce the memory footprint for a given application, see the * "small_hello_world" template. * */ #include <stdio.h> #include "alt_types.h" // alt_u32 #include <unistd.h> 以上是关于SD卡WAV音乐播放器(quartus11.0)(FAT32)(DE2-115)的主要内容,如果未能解决你的问题,请参考以下文章
上传音乐到Android模拟器的SD卡,并在Android模拟器上播放 |