logstash之multiline插件,匹配多行日志
Posted 运维工匠实战(如果发现有错误请大家把正确的方法发送给我,方便
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了logstash之multiline插件,匹配多行日志相关的知识,希望对你有一定的参考价值。
在外理日志时,除了访问日志外,还要处理运行时日志,该日志大都用程序写的,比如log4j。运行时日志跟访问日志最大的不同是,运行时日志是多行,也就是说,连续的多行才能表达一个意思。
在filter中,加入以下代码:
filter {
multiline { }
}
如果能按多行处理,那么把他们拆分到字段就很容易了。
字段属性:
对于multiline插件来说,有三个设置比较重要:negate , pattern 和 what
negate:类型是boolean默认为false
pattern:
必须设置,并且没有默认值,类型为string,要匹配下则表达式
what:
必须设置,并且没有默认值,可以为previous(之前的)或next
下面看看这个例子:
# cat logstash_multiline_shipper.conf input { file { path => "/apps/logstash/conf/test/c.out" type => "runtimelog" codec => multiline { pattern => "^\[" negate => true what => "previous" } start_position => "beginning" sincedb_path => "/apps/logstash/logs/sincedb-access" ignore_older =>0 } } output { stdout{ codec => rubydebug } }
说明:区配以"["开头的行,如果不是,那肯定是属于前一行的
测试数据如下:
[16-04-12 03:40:01 DEBUG] model.MappingNode:- [‘/store/shopclass‘] matched over. [16-04-12 03:40:02 DEBUG] impl.JdbcEntityInserter:- from product_category product_category where product_category.PARENT_ID is null and product_category.STATUS = ? and product_category.DEALER_ID is null order by product_category.ORDERS asc [16-04-12 03:40:03 DEBUG] model.MappingNode:- [‘/store/shopclass‘] matched over. [16-04-12 03:40:04 DEBUG] model.MappingNode:- [‘/store/shopclass‘] matched over. [16-04-12 03:40:05 DEBUG] impl.JdbcEntityInserter:- from product_category product_category where product_category.PARENT_ID is null and product_category.STATUS = ? and product_category.DEALER_ID is null order by product_category.ORDERS desc [16-04-12 03:40:06 DEBUG] impl.JdbcEntityInserter:- from product_category product_category where product_category.PARENT_ID is null and product_category.STATUS = ? and product_category.DEALER_ID is null order by product_category.ORDERS asc [16-04-12 03:40:07 DEBUG] model.MappingNode:- [‘/store/shopclass‘] matched over.
启动logstash:
# ./../bin/logstash -f logstash_multiline_shipper.conf Sending Logstash‘s logs to /apps/logstash/logs which is now configured via log4j2.properties [2016-12-09T15:16:59,173][INFO ][logstash.pipeline ] Starting pipeline {"id"=>"main", "pipeline.workers"=>4, "pipeline.batch.size"=>125, "pipeline.batch.delay"=>5, "pipeline.max_inflight"=>500} [2016-12-09T15:16:59,192][INFO ][logstash.pipeline ] Pipeline main started [2016-12-09T15:16:59,263][INFO ][logstash.agent ] Successfully started Logstash API endpoint {:port=>9601}
加入测试数据到被监控的log后,查看输出:
# ./../bin/logstash -f logstash_multiline_shipper.conf Sending Logstash‘s logs to /apps/logstash/logs which is now configured via log4j2.properties [2016-12-09T15:16:59,173][INFO ][logstash.pipeline ] Starting pipeline {"id"=>"main", "pipeline.workers"=>4, "pipeline.batch.size"=>125, "pipeline.batch.delay"=>5, "pipeline.max_inflight"=>500} [2016-12-09T15:16:59,192][INFO ][logstash.pipeline ] Pipeline main started [2016-12-09T15:16:59,263][INFO ][logstash.agent ] Successfully started Logstash API endpoint {:port=>9601} { "path" => "/apps/logstash/conf/test/c.out", "@timestamp" => 2016-12-09T07:21:15.403Z, "@version" => "1", "host" => "ofs1", "message" => "# ./../bin/logstash -f logstash_multiline_shipper.conf \nSending Logstash‘s logs to /apps/logstash/logs which is now configured via log4j2.properties", "type" => "runtimelog", "tags" => [ [0] "multiline" ] } { "path" => "/apps/logstash/conf/test/c.out", "@timestamp" => 2016-12-09T07:21:15.409Z, "@version" => "1", "host" => "ofs1", "message" => "[2016-12-09T15:16:59,173][INFO ][logstash.pipeline ] Starting pipeline {\"id\"=>\"main\", \"pipeline.workers\"=>4, \"pipeline.batch.size\"=>125, \"pipeline.batch.delay\"=>5, \"pipeline.max_inflight\"=>500}", "type" => "runtimelog", "tags" => [] } { "path" => "/apps/logstash/conf/test/c.out", "@timestamp" => 2016-12-09T07:21:15.410Z, "@version" => "1", "host" => "ofs1", "message" => "[2016-12-09T15:16:59,192][INFO ][logstash.pipeline ] Pipeline main started", "type" => "runtimelog", "tags" => [] }
以上是关于logstash之multiline插件,匹配多行日志的主要内容,如果未能解决你的问题,请参考以下文章
logstash multiline 把多行文件处理为一个 event
logstash multiline处理csv单元格多行数据的double quotes问题(exception=>#<CSV::MalformedCSVError: Unclosed quoted)