hdfs的特点都有哪些
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdfs的特点都有哪些相关的知识,希望对你有一定的参考价值。
参考技术A hdfs的特点一、hdfs的优点
1.支持海量数据的存储:一般来说,HDFS存储的文件可以支持TB和PB级别的数据。
2.检测和快速应对硬件故障:在集群环境中,硬件故障是常见性问题。因为有上千台服务器连在一起,故障率很高,因此故障检测和自动恢复hdfs文件系统的一个设计目标。假设某一个datanode挂掉之后,因为数据是有备份的,还可以从其他节点里找到。namenode通过心跳机制来检测datanode是否还存活。
3.流式数据访问:(HDFS不能做到低延迟的数据访问,但是HDFS的吞吐量大)=》Hadoop适用于处理离线数据,不适合处理实时数据。HDFS的数据处理规模比较大,应用一次需要大量的数据,同时这些应用一般都是批量处理,而不是用户交互式处理。应用程序能以流的形式访问数据库。主要的是数据的吞吐量,而不是访问速度。访问速度最终是要受制于网络和磁盘的速度,机器节点再多,也不能突破物理的局限。
4.简化的一致性模型:对于外部使用用户,不需要了解hadoop底层细节,比如文件的切块,文件的存储,节点的管理。一个文件存储在HDFS上后,适合一次写入,多次读取的场景。因为存储在HDFS上的文件都是超大文件,当上传完这个文件到hadoop集群后,会进行文件切块,分发,复制等操作。如果文件被修改,会导致重新触发这个过程,而这个过程耗时是最长的。所以在hadoop里,2.0版本允许数据的追加,单不允许数据的修改。
5.高容错性:数据自动保存多个副本,副本丢失后自动恢复。可构建在廉价的机器上,实现线性扩展。当集群增加新节点之后,namenode也可以感知,将数据分发和备份到相应的节点上。
6.商用硬件:Hadoop并不需要运行在昂贵且高可靠的硬件上。它是设计运行在商用硬件(在各种零售店都能买到的普通硬件)的集群上的,因此至少对于庞大的集群来说,节点故障的几率还是非常高的。HDFS遇到上述故障时,被设计成能够继续运行且不让用户察觉到明显的中断。
二、HDFS缺点(局限性)
1、不能做到低延迟数据访问:由于hadoop针对高数据吞吐量做了优化,牺牲了获取数据的延迟,所以对于低延迟数据访问,不适合hadoop。对于低延迟的访问需求,HBase是更好的选择。
2、不适合大量的小文件存储 :由于namenode将文件系统的元数据存储在内存中,因此该文件系统所能存储的文件总数受限于namenode的内存容量。根据经验,每个文件、目录和数据块的存储信息大约占150字节。因此,如果有一百万个小文件,每个小文件都会占一个数据块,那至少需要300MB内存。如果是上亿级别的,就会超出当前硬件的能力。
3、修改文件:对于上传到HDFS上的文件,不支持修改文件。Hadoop2.0虽然支持了文件的追加功能,但是还是不建议对HDFS上的文件进行修改。因为效率低下。HDFS适合一次写入,然后多次读取的场景。
4、不支持用户的并行写:同一时间内,只能有一个用户执行写操作。
hadoop都有哪些优缺点
一、HDFS缺点:
1、不能做到低延迟:由于hadoop针对高数据吞吐量做了优化,牺牲了获取数据的延迟,所以对于低延迟数据访问,不适合hadoop,对于低延迟的访问需求,HBase是更好的选择,
2、不适合大量的小文件存储:由于namenode将文件系统的元数据存储在内存中,因此该文件系统所能存储的文件总数受限于namenode的内存容量,根据经验,每个文件、目录和数据块的存储信息大约占150字节。
3、不适合多用户写入文件,修改文件:Hadoop2.0虽然支持文件的追加功能,但是还是不建议对HDFS上的 文件进行修改,因为效率低。
4、对于上传到HDFS上的文件,不支持修改文件,HDFS适合一次写入,多次读取的场景。
5、HDFS不支持多用户同时执行写操作,即同一时间,只能有一个用户执行写操作。
二、HDFS优点:
1、高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
2、高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
3、高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
4、高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
5、低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。
6、Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。
一、 Hadoop 特点
1、支持超大文件:一般来说,HDFS存储的文件可以支持TB和PB级别的数据。
2、检测和快速应对硬件故障:在集群环境中,硬件故障是常见性问题。因为有上千台服务器连在一起,故障率高,因此故障检测和自动恢复hdfs文件系统的一个设计目标。
3、流式数据访问:HDFS的数据处理规模比较大,应用一次需要大量的数据,同时这些应用一般都是批量处理,而不是用户交互式处理,应用程序能以流的形式访问数据库。
4、简化的一致性模型:对于外部使用用户,不需要了解hadoop底层细节,比如文件的切块,文件的存储,节点的管理。
5、高容错性:数据自动保存多个副本,副本丢失后自动恢复。可构建在廉价机上,实现线性(横向)扩展,当集群增加新节点之后,namenode也可以感知,将数据分发和备份到相应的节点上。
6、商用硬件:Hadoop并不需要运行在昂贵且高可靠的硬件上,它是设计运行在商用硬件的集群上的,因此至少对于庞大的集群来说,节点故障的几率还是非常高的。HDFS遇到上述故障时,被设计成能够继续运行且不让用户察觉到明显的中断。
参考技术A Hadoop的优缺点介绍:(一) 优点:
(一)高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖;
(二)高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
(三)高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
(四)高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
(二) 缺点:
(一)不适合低延迟数据访问。
(二)无法高效存储大量小文件。
(三)不支持多用户写入及任意修改文件。
了解更多开源相关,去LUPA社区看看吧。本回答被提问者和网友采纳
以上是关于hdfs的特点都有哪些的主要内容,如果未能解决你的问题,请参考以下文章