precison and recall

Posted 三公分阳光

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了precison and recall相关的知识,希望对你有一定的参考价值。

原文出自:http://blog.csdn.net/wangran51/article/details/7579100

 

最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇到,

知道意思,但是有时候要很清晰地向同学介绍则有点转不过弯来。
召回率和准确率是数据挖掘中预测、互联网中的搜索引擎等经常涉及的两个概念和指标。
召回率:Recall,又称“查全率”——还是查全率好记,也更能体现其实质意义。
准确率:Precision,又称“精度”、“正确率”。

以检索为例,可以把搜索情况用下图表示:

 
相关
不相关
检索到
A
B
未检索到
C
D

 

A:检索到的,相关的                (搜到的也想要的)
B:检索到的,但是不相关的          (搜到的但没用的)
C:未检索到的,但却是相关的        (没搜到,然而实际上想要的)
D:未检索到的,也不相关的          (没搜到也没用的)

如果我们希望:被检索到的内容越多越好,这是追求“查全率”,即A/(A+C),越大越好。

如果我们希望:检索到的文档中,真正想要的、也就是相关的越多越好,不相关的越少越好,

这是追求“准确率”,即A/(A+B),越大越好。

 

“召回率”与“准确率”虽然没有必然的关系(从上面公式中可以看到),在实际应用中,是相互制约的。

要根据实际需求,找到一个平衡点。

 

往往难以迅速反应的是“召回率”。我想这与字面意思也有关系,从“召回”的字面意思不能直接看到其意义。

“召回”在中文的意思是:把xx调回来。“召回率”对应的英文“recall”,

recall除了有上面说到的“order sth to return”的意思之外,还有“remember”的意思。

Recall:the ability to remember sth. that you have learned or sth. that has happened in the past.

当我们问检索系统某一件事的所有细节时(输入检索query查询词),

Recall指:检索系统能“回忆”起那些事的多少细节,通俗来讲就是“回忆的能力”。

“能回忆起来的细节数” 除以 “系统知道这件事的所有细节”,就是“记忆率”,

也就是recall——召回率。简单的,也可以理解为查全率。

 

  根据自己的知识总结的,定义应该肯定对了,在某些表述方面可能有错误的地方。
假设原始样本中有两类,其中:

1:总共有 P个类别为1的样本,假设类别1为正例。 
2:总共有N个类别为0 的样本,假设类别0为负例。 
经过分类后:
3:有 TP个类别为1 的样本被系统正确判定为类别1,FN 个类别为1 的样本被系统误判定为类别 0,

显然有P=TP+FN; 
4:有 FP 个类别为0 的样本被系统误判断定为类别1,TN 个类别为0 的样本被系统正确判为类别 0,

显然有N=FP+TN; 
 
那么:
精确度(Precision):
P = TP/(TP+FP) ;  反映了被分类器判定的正例中真正的正例样本的比重( 
 
准确率(Accuracy)
A = (TP + TN)/(P+N) = (TP + TN)/(TP + FN + FP + TN);    

反映了分类器统对整个样本的判定能力——能将正的判定为正,负的判定为负 
 
召回率(Recall),也称为 True Positive Rate:
R = TP/(TP+FN) = 1 - FN/T;  反映了被正确判定的正例占总的正例的比重 
 
转移性(Specificity,不知道这个翻译对不对,这个指标用的也不多),

也称为 True NegativeRate 
S = TN/(TN + FP) = 1 – FP/N;   明显的这个和召回率是对应的指标,

只是用它在衡量类别0 的判定能力。 
 
F-measure or balanced F-score
F = 2 *  召回率 *  准确率/ (召回率+准确率);这就是传统上通常说的F1 measure,

另外还有一些别的F measure,可以参考下面的链接 
 
上面这些介绍可以参考: 
http://en.wikipedia.org/wiki/Precision_and_recall
同时,也可以看看:http://en.wikipedia.org/wiki/Accuracy_and_precision
 
为什么会有这么多指标呢?
        这是因为模式分类和机器学习的需要。判断一个分类器对所用样本的分类能力或者在不同的应用场合时,

需要有不同的指标。 当总共有个100 个样本(P+N=100)时,假如只有一个正例(P=1),

那么只考虑精确度的话,不需要进行任何模型的训练,直接将所有测试样本判为正例,

那么 A 能达到 99%,非常高了,但这并没有反映出模型真正的能力。另外在统计信号分析中,

对不同类的判断结果的错误的惩罚是不一样的。举例而言,雷达收到100个来袭 导弹的信号,

其中只有 3个是真正的导弹信号,其余 97 个是敌方模拟的导弹信号。假如系统判断 98 个

(97 个模拟信号加一个真正的导弹信号)信号都是模拟信号,那么Accuracy=98%,

很高了,剩下两个是导弹信号,被截掉,这时Recall=2/3=66.67%,

Precision=2/2=100%,Precision也很高。但剩下的那颗导弹就会造成灾害。 
 
因此在统计信号分析中,有另外两个指标来衡量分类器错误判断的后果:
漏警概率(Missing Alarm)
MA = FN/(TP + FN) = 1 – TP/T = 1 - R;  反映有多少个正例被漏判了

(我们这里就是真正的导弹信号被判断为模拟信号,可见MA此时为 33.33%,太高了) 

 
虚警概率(False Alarm)
FA = FP / (TP + FP) = 1 – P;反映被判为正例样本中,有多少个是负例。 


       统计信号分析中,希望上述的两个错误概率尽量小。而对分类器的总的惩罚旧

是上面两种错误分别加上惩罚因子的和:COST = Cma *MA + Cfa * FA。

不同的场合、需要下,对不同的错误的惩罚也不一样的。像这里,我们自然希望对漏警的惩罚大,

因此它的惩罚因子 Cma 要大些。 

       个人观点:虽然上述指标之间可以互相转换,但在模式分类中,

一般用 P、R、A 三个指标,不用MA和 FA。而且统计信号分析中,也很少看到用 R 的。

 

好吧,其实我也不是IR专家,但是我喜欢IR,最近几年国内这方面研究的人挺多的,google和百度的强势,也说明了这个方向的价值。当然,如果你是学IR的,不用看我写的这些基础的东西咯。如果你是初学者或者是其他学科的,正想了解这些科普性质的知识,那么我这段时间要写的这个"信息检索X科普"系列也许可以帮助你。(我可能写的不是很快,见谅)

至于为什么名字中间带一个字母X呢? 

为什么先讲Precision和Recall呢?因为IR中很多算法的评估都用到Precision和Recall来评估好坏。所以我先讲什么是"好人",再告诉你他是"好人"

查准与召回(Precision & Recall)

先看下面这张图来理解了,后面再具体分析。下面用P代表Precision,R代表Recall

   

   

通俗的讲,Precision 就是检索出来的条目中(比如网页)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了。

下面这张图介绍True Positive,False Negative等常见的概念,P和R也往往和它们联系起来。

   

我们当然希望检索的结果P越高越好,R也越高越好,但事实上这两者在某些情况下是矛盾的。比如极端情况下,我们只搜出了一个结果,且是准确的,那么P就是100%,但是R就很低;而如果我们把所有结果都返回,那么必然R是100%,但是P很低。

因此在不同的场合中需要自己判断希望P比较高还是R比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析(我应该会在以后介绍)。

   

   

F1  Measure

前面已经讲了,P和R指标有的时候是矛盾的,那么有没有办法综合考虑他们呢?我想方法肯定是有很多的,最常见的方法应该就是F Measure了,有些地方也叫做F Score,都是一样的。

F Measure是Precision和Recall加权调和平均:

F = (a^2+1)P*R / a^2P +R

当参数a=1时,就是最常见的F1了:

F1 = 2P*R / (P+R)

很容易理解,F1综合了P和R的结果。

以上是关于precison and recall的主要内容,如果未能解决你的问题,请参考以下文章

DELL Precison 7670 不能加载系统固态硬盘

DELL Precison 7670 不能加载系统固态硬盘

数据结构与算法 -- 回溯算法

在 python 中使用 gridsearchcv 进行梯度提升分类器的参数调整

ORACLE 中NUMBER类型默认的精度和Scale问题

LDA主题模型和推荐系统1