r-cnn学习:SmoothL1LossLayer论文与代码的结合理解

Posted 牧马人夏峥

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了r-cnn学习:SmoothL1LossLayer论文与代码的结合理解相关的知识,希望对你有一定的参考价值。

A Loss Function for Learning Region Proposals

    训练RPN时,只对两种anchor给予正标签:和gt_box有着最高的IoU && IoU超过0.7。如果对于

所有的gt_box,其IoU都小于0.3,则标记为负。损失函数定义如下:

 

其中i为一个mini-batch中某anchor的索引,pi表示其为目标的预测概率,pi*表示gt_box(正为1,否则为0)。

ti和ti*分别表示预测框的位置和gt_box框的位置。Lreg如下:

 

bound-box regression中各参数的计算方式为:

   (4)

 

 其对应的SmoothL1LossLayer代码如下,整个过程分为两部分:前向计算以及后向计算(1)式的后半部分:

 

// ------------------------------------------------------------------  
// Fast R-CNN  
// Copyright (c) 2015 Microsoft  
// Licensed under The MIT License [see fast-rcnn/LICENSE for details]  
// Written by Ross Girshick  
// ------------------------------------------------------------------  
  
#include "caffe/fast_rcnn_layers.hpp"  
  
namespace caffe {  
//SmoothL1前向计算(3)式  
template <typename Dtype>  
__global__ void SmoothL1Forward(const int n, const Dtype* in, Dtype* out,  
    Dtype sigma2) {  
  // f(x) = 0.5 * (sigma * x)^2          if |x| < 1 / sigma / sigma  
  //        |x| - 0.5 / sigma / sigma    otherwise  
  CUDA_KERNEL_LOOP(index, n) {  
    Dtype val = in[index];  
    Dtype abs_val = abs(val);  
    if (abs_val < 1.0 / sigma2) {  
      out[index] = 0.5 * val * val * sigma2;  
    } else {  
      out[index] = abs_val - 0.5 / sigma2;  
    }  
  }  
}  
//  
template <typename Dtype>  
void SmoothL1LossLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,  
    const vector<Blob<Dtype>*>& top) {  
  int count = bottom[0]->count();  
  caffe_gpu_sub(  
      count,  
      bottom[0]->gpu_data(),  //ti
      bottom[1]->gpu_data(),  //ti*
      diff_.mutable_gpu_data());    // d := ti-ti*  
  if (has_weights_) {  //乘上相关的权重,对应于(1)式中的pi*,有目标时为1
    // apply "inside" weights  
    caffe_gpu_mul(  
        count,  
        bottom[2]->gpu_data(), //pi* 
        diff_.gpu_data(),  
        diff_.mutable_gpu_data());  // d := w_in * (b0 - b1)  
  }  
//代入计算SmoothL1 SmoothL1Forward
<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( count, diff_.gpu_data(), errors_.mutable_gpu_data(), sigma2_); CUDA_POST_KERNEL_CHECK; if (has_weights_) { //乘上相关的权重 // apply "outside" weights caffe_gpu_mul( count, bottom[3]->gpu_data(), // 1/Nreg errors_.gpu_data(), errors_.mutable_gpu_data()); // d := w_out * SmoothL1(w_in * (b0 - b1)) } Dtype loss; caffe_gpu_dot(count, ones_.gpu_data(), errors_.gpu_data(), &loss); top[0]->mutable_cpu_data()[0] = loss / bottom[0]->num(); } //反向计算,对smoothLoss求导 template <typename Dtype> __global__ void SmoothL1Backward(const int n, const Dtype* in, Dtype* out, Dtype sigma2) { // f\'(x) = sigma * sigma * x if |x| < 1 / sigma / sigma // = sign(x) otherwise CUDA_KERNEL_LOOP(index, n) { Dtype val = in[index]; Dtype abs_val = abs(val); if (abs_val < 1.0 / sigma2) { out[index] = sigma2 * val; } else { out[index] = (Dtype(0) < val) - (val < Dtype(0)); } } } // template <typename Dtype> void SmoothL1LossLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { // after forwards, diff_ holds w_in * (b0 - b1) int count = diff_.count();
//调用反向smoothloss,diff_.gpu_data()表示x,diff_.mutable_gpu_data()表示smoothloss的导数 SmoothL1Backward
<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( count, diff_.gpu_data(), diff_.mutable_gpu_data(), sigma2_);

//类似于前向 CUDA_POST_KERNEL_CHECK;
for (int i = 0; i < 2; ++i) { if (propagate_down[i]) { const Dtype sign = (i == 0) ? 1 : -1; const Dtype alpha = sign * top[0]->cpu_diff()[0] / bottom[i]->num(); caffe_gpu_axpby( count, // count alpha, // alpha diff_.gpu_data(), // x Dtype(0), // beta bottom[i]->mutable_gpu_diff()); // y if (has_weights_) { // Scale by "inside" weight caffe_gpu_mul( count, bottom[2]->gpu_data(), bottom[i]->gpu_diff(), bottom[i]->mutable_gpu_diff()); // Scale by "outside" weight caffe_gpu_mul( count, bottom[3]->gpu_data(), bottom[i]->gpu_diff(), bottom[i]->mutable_gpu_diff()); } } } } INSTANTIATE_LAYER_GPU_FUNCS(SmoothL1LossLayer); } // namespace caffe

 

 

 

 

以上是关于r-cnn学习:SmoothL1LossLayer论文与代码的结合理解的主要内容,如果未能解决你的问题,请参考以下文章

转R-CNN学习笔记5:Faster R-CNN

转R-CNN学习笔记4:Fast R-CNN

利用更快的r-cnn深度学习进行目标检测

两阶段目标检测R-CNN论文精读与学习总结

两阶段目标检测R-CNN论文精读与学习总结

R-CNN系列算法精讲:R-CNN —》Fast R-CNN —》Faster R-CNN 进阶之路