4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用
Posted Michael2397
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用相关的知识,希望对你有一定的参考价值。
1 数据集介绍:
虹膜
150个实例
萼片长度,萼片宽度,花瓣长度,花瓣宽度
(sepal length, sepal width, petal length and petal width)
类别:
Iris setosa, Iris versicolor, Iris virginica.
2. 利用Python的机器学习库sklearn: SkLearnExample.py
from sklearn import neighbors
from sklearn import datasets
knn = neighbors.KNeighborsClassifier()
iris = datasets.load_iris()
print iris
knn.fit(iris.data, iris.target)
predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])
print predictedLabel
3. KNN 实现Implementation:
# Example of kNN implemented from Scratch in Python
import csv
import random
import math
import operator
def loadDataset(filename, split, trainingSet=[] , testSet=[]):
with open(filename, \'rb\') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)
for x in range(len(dataset)-1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
if random.random() < split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x])
def euclideanDistance(instance1, instance2, length):
distance = 0
for x in range(length):
distance += pow((instance1[x] - instance2[x]), 2)
return math.sqrt(distance)
def getNeighbors(trainingSet, testInstance, k):
distances = []
length = len(testInstance)-1
for x in range(len(trainingSet)):
dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x], dist))
distances.sort(key=operator.itemgetter(1))
neighbors = []
for x in range(k):
neighbors.append(distances[x][0])
return neighbors
def getResponse(neighbors):
classVotes = {}
for x in range(len(neighbors)):
response = neighbors[x][-1]
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1
sortedVotes = sorted(classVotes.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedVotes[0][0]
def getAccuracy(testSet, predictions):
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]:
correct += 1
return (correct/float(len(testSet))) * 100.0
def main():
# prepare data
trainingSet=[]
testSet=[]
split = 0.67
loadDataset(r\'D:\\MaiziEdu\\DeepLearningBasics_MachineLearning\\Datasets\\iris.data.txt\', split, trainingSet, testSet)
print \'Train set: \' + repr(len(trainingSet))
print \'Test set: \' + repr(len(testSet))
# generate predictions
predictions=[]
k = 3
for x in range(len(testSet)):
neighbors = getNeighbors(trainingSet, testSet[x], k)
result = getResponse(neighbors)
predictions.append(result)
print(\'> predicted=\' + repr(result) + \', actual=\' + repr(testSet[x][-1]))
accuracy = getAccuracy(testSet, predictions)
print(\'Accuracy: \' + repr(accuracy) + \'%\')
main()
以上是关于4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用的主要内容,如果未能解决你的问题,请参考以下文章
最邻近规则分类(K-Nearest Neighbor)KNN算法
最邻近规则分类(K-Nearest Neighbor)KNN算法(七)
K-Nearest Neighbor, KNN K最邻近 教学视频