Opencv— — Bias and Gain
Posted Matrix_11
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Opencv— — Bias and Gain相关的知识,希望对你有一定的参考价值。
// define head function
#ifndef PS_ALGORITHM_H_INCLUDED
#define PS_ALGORITHM_H_INCLUDED
#include <iostream>
#include <string>
#include "cv.h"
#include "highgui.h"
#include "cxmat.hpp"
#include "cxcore.hpp"
#include "math.h"
using namespace std;
using namespace cv;
void Show_Image(Mat&, const string &);
#endif // PS_ALGORITHM_H_INCLUDED
/*
Adjust bias and gain.
*/
#include "PS_Algorithm.h"
float Bias(float a, float b);
float Gain(float a, float b);
int main()
{
string Image_name("4.jpg");
Mat Img=imread(Image_name.c_str());
Mat Img_out(Img.size(), CV_32FC3);
float gain_val = 0.75; // 0-1
float bias_val = 0.25; // 0-1
int width=Img.cols;
int height=Img.rows;
float val;
for (int y=0; y<height; y++)
{
for (int x=0; x<width; x++)
{
for (int k=0; k<3; k++)
{
val=(float)Img.at<Vec3b>(y, x)[k]/255;
val=Gain(val, gain_val);
Img_out.at<Vec3f>(y, x)[k]=Bias(val, bias_val);
}
}
}
Show_Image(Img_out, "New_img");
cout<<"All is well."<<endl;
waitKey();
}
float Bias(float a, float b)
{
float y;
a=pow(a, log(b)/log(0.5));
y=a/((1.0f/b-2)*(1.0f-a)+1);
return y;
}
float Gain(float a, float b)
{
/*
float p = log(1.0 - b) / log(0.5);
if (a < .001)
return 0.0f;
else if (a > .999)
return 1.0f;
if (a < 0.5)
return pow(2 * a, p) / 2;
else
return 1.0f - pow(2 * (1. - a), p) / 2;
*/
float c = (1.0f/b-2.0f) * (1.0f-2.0f*a);
if (a < 0.5)
return a/(c+1.0f);
else
return (c-a)/(c-1.0f);
}
// define the show image
#include "PS_Algorithm.h"
#include <iostream>
#include <string>
using namespace std;
using namespace cv;
void Show_Image(Mat& Image, const string& str)
{
namedWindow(str.c_str(),CV_WINDOW_AUTOSIZE);
imshow(str.c_str(), Image);
}
图像效果可以参考:
http://blog.csdn.net/matrix_space/article/details/46790171
以上是关于Opencv— — Bias and Gain的主要内容,如果未能解决你的问题,请参考以下文章
diversity, multiplexing and array gain
Trade off between bias and variance
AI数学基础15——Bias(偏差) and Variance(方差)
The difference between variance and bias
Horns provide high gain, low VSWR, relatively wide bandwidth, low weight, and are easy to construct