DataFrame入门案例(集团公司对人事信息处理场景)

Posted 大数据和人工智能躺过的坑

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了DataFrame入门案例(集团公司对人事信息处理场景)相关的知识,希望对你有一定的参考价值。

 

  我用一个集团公司对人事信息处理场景的简单案例,来作为入门,详细分析DataFrame上的各种常用操作,包括集团子公司的职工人事信息的合并,职工的部门相关信息查询、职工信息的统计、关联职工与部门信息的统计,以及如何将各种统计得到的结果存储到外部存储系统等。

  在此入门案例里,涉及的DataFrame实例内容包括从外部文件构建DataFrame,在DataFram上比较常用的操作,多个DataFrame之间的操作,以及DataFrame的持久化操作等内容。

 

 

  注意,如果文件中存在换行回车符,以及文件中的一些错误,都会出现“corrupt_record"错误。如果没有则能够正常导入。

 

修正后

 

 

 

  people.json

{"name":"Michael","job number":"001","age":33,"gender":"male","deptId":1,"salary":3000}
{"name":"Andy","job number":"002","age":30,"gender":"female","deptId":2,"salary":4000}
{"name":"Justin","job number":"003","age":19,"gender":"male","deptId":3,"salary":5000}
{"name":"John","job number":"004","age":32,"gender":"male","deptId":1,"salary":6000}
{"name":"Herry","job number":"005","age":20,"gender":"female","deptId":2,"salary":7000}
{"name":"Jack","job number":"006","age":26,"gender":"male","deptId":3,"salary":3000}

 people.json文件包含了员工的相关信息,每一列分别对应:员工姓名、工号、年龄、性别、部门ID以及薪资。

 

 

 

 

 

  newPeople.json

{"name":"Spark","job number":"007","age":32,"gender":"male","deptId":1,"salary":4000}
{"name":"Hadoop","job number":"008","age":20,"gender":"female","deptId":2,"salary":5000}
{"name":"Storm","job number":"009","age":26,"gender":"male","deptId":3,"salary":6000}

  该文件对应新入职员工的信息

 

 

 

 

 

 

  department.json

{"name":"Development Dept","deptId":1}
{"name":"Personnel Dept","deptId":2}
{"name":"Testing Department","deptId":3}

  该文件是员工们的部门信息,包含部门的名称和部门ID。其中,部门ID对应员工信息中的部门ID,即员工的deptId列

 

 

 

编写代码

 

 

  

 

 加载方式

    以上,我提供了3种方式加载本地文件,当然HDFS上的文件,差不多啦。

  people、newpeople、department是生成的3个DataFrame实例,同时根据文件内容自动地推导出三个DataFrame实例的schema信息,schema信息包含了列的名字以及对应的数据类型,如dept的schema信息为[deptId : bigint,name,string]

 

 

 

 

以表格形式查看DataFrame信息

  people.show()

  通过show方法,可以以表格形式输出各个DataFrame的内容。默认情况下会显示DataFrame的20条记录,可以通过设置show方法的参数来指定输出的记录条数。

如people.show(10),显示前10条记录。

  为了模拟,加大people.json文件里的数据

{"name":"Michael","job number":"001","age":33,"gender":"male","deptId":1,"salary":3000}
{"name":"Andy","job number":"002","age":30,"gender":"female","deptId":2,"salary":4000}
{"name":"Justin","job number":"003","age":19,"gender":"male","deptId":3,"salary":5000}
{"name":"John","job number":"004","age":32,"gender":"male","deptId":1,"salary":6000}
{"name":"Herry","job number":"005","age":20,"gender":"female","deptId":2,"salary":7000}
{"name":"Jack","job number":"006","age":26,"gender":"male","deptId":3,"salary":3000}
{"name":"aa","job number":"001","age":33,"gender":"male","deptId":1,"salary":3000}
{"name":"bb","job number":"002","age":30,"gender":"female","deptId":2,"salary":4000}
{"name":"cc","job number":"003","age":19,"gender":"male","deptId":3,"salary":5000}
{"name":"dd","job number":"004","age":32,"gender":"male","deptId":1,"salary":6000}
{"name":"ee","job number":"005","age":20,"gender":"female","deptId":2,"salary":7000}
{"name":"ff","job number":"006","age":26,"gender":"male","deptId":3,"salary":3000}
{"name":"gg","job number":"001","age":33,"gender":"male","deptId":1,"salary":3000}
{"name":"hh","job number":"002","age":30,"gender":"female","deptId":2,"salary":4000}
{"name":"ii","job number":"003","age":19,"gender":"male","deptId":3,"salary":5000}
{"name":"jj","job number":"004","age":32,"gender":"male","deptId":1,"salary":6000}
{"name":"kk","job number":"005","age":20,"gender":"female","deptId":2,"salary":7000}
{"name":"ll","job number":"006","age":26,"gender":"male","deptId":3,"salary":3000}
{"name":"mm","job number":"001","age":33,"gender":"male","deptId":1,"salary":3000}
{"name":"nn","job number":"002","age":30,"gender":"female","deptId":2,"salary":4000}
{"name":"oo","job number":"003","age":19,"gender":"male","deptId":3,"salary":5000}
{"name":"pp","job number":"004","age":32,"gender":"male","deptId":1,"salary":6000}
{"name":"qq","job number":"005","age":20,"gender":"female","deptId":2,"salary":7000}
{"name":"rr","job number":"006","age":26,"gender":"male","deptId":3,"salary":3000}
{"name":"ss","job number":"001","age":33,"gender":"male","deptId":1,"salary":3000}
{"name":"tt","job number":"002","age":30,"gender":"female","deptId":2,"salary":4000}
{"name":"uu","job number":"003","age":19,"gender":"male","deptId":3,"salary":5000}
{"name":"vv","job number":"004","age":32,"gender":"male","deptId":1,"salary":6000}
{"name":"ww","job number":"005","age":20,"gender":"female","deptId":2,"salary":7000}
{"name":"xx","job number":"006","age":26,"gender":"male","deptId":3,"salary":3000}

 

 

 

 

 

 

DataFrame基本信息的查询

 

  使用DataFrame的columsns方法,查询people包含的全部列信息,以数组的形式返回列名组。

Array[String]=Array(age,deptId,gender,job number,name,salary)

 

 

  使用DataFrame的count方法,统计people包含的记录条数,即员工个数。  

Long=6

 

  使用DataFram的take方法,获取前三条员工记录信息,并以数组形式呈现出来。

Array[org.apache.spark.sql.Row] = Array( [33,1,male,001,Michael,3000],[30,2,female,002,Andy,4000],[19,3,male,003,Justin,5000] )


 

 

   使用DataFrame的toJSON方法,将people转换成JsonRDD类型,并使用RDD的collect方法返回其包含的员工信息。

Array[String] = Array( {"age":33,"deptId":1,"gender":"male","job number":"001","name":"Michael","salary":3000},{"age":30,"deptId":2,"gender":"female","job number":"002","name":"Andy","salary":4000},{"age":19,"deptId":3,"gender":"male","job number":"003","name":"Justin","salary":5000},{"age":32,"deptId":1,"gender":"male","job number":"004","name":"John","salary":6000},{"age":20,"deptId":2,"gender":"female","job number":"005","name":"Herry","salary":7000},{"age":26,"deptId":3,"gender":"male","job number":"006","name":"Jack","salary":3000})







  

对员工信息进行条件查询,并输出结果

 

  在命令行里,执行这些

  使用count方法统计了"gender”列为"male”的员工数量

Long = 4

 

 

 

 

  基于“age”和“gender”这两列,使用不同的查询条件,不同的DataFrame API,即where和filter方法,对员工信息进行过滤。最后使用show方法,将查询结果以表格形式呈现出来。

Long = 4

age  depId   gender  job number  name  salary

33  1     male       001      Michael    3000

30  2      female   002      Andy   4000

32  1       male    004      John    6000

26  3      male       006        Jack    3000

 

 

 

 

age  depId   gender  job number  name  salary

33  1     male       001      Michael    3000

30  2      female   002      Andy   4000

32  1       male    004      John    6000

26  3      male       006        Jack    3000

 

 

 

 

age  depId   gender  job number  name  salary

33  1     male       001      Michael    3000

32  1       male    004      John    6000

26  3      male       006        Jack    3000

 

 

 

 

age  depId   gender  job number  name  salary

33  1     male       001      Michael    3000

30  2      female   002      Andy   4000

32  1       male    004      John    6000

26  3      male       006        Jack    3000

 

 

 

 

 

对员工信息进行,以指定的列名,以不同方式进行排序

  先以“job number”列升序,再以“deptId”列降序

age  depId   gender  job number  name  salary

33  1     male       001      Michael    3000

30  2      female   002      Andy   4000

19  3      male      003      Justin    5000

32  1       male    004      John    6000

20  2       female   005      Herry   7000

26  3      male       006        Jack    3000

 

 

 

   以“job number”列进行默认排序(升序),并显示排序后的3条记录

age  depId   gender  job number  name  salary

33  1     male       001      Michael    3000

30  2      female   002      Andy   4000

19  3      male      003      Justin    5000

 

 

 

以“job number”列进行默认排序(升序),并显示排序后的3条记录

age  depId   gender  job number  name  salary

33  1     male       001      Michael    3000

30  2      female   002      Andy   4000

19  3      male      003      Justin    5000

 

 

 

age  depId   gender  job number  name  salary

26  3      male       006        Jack    3000

20  2       female   005      Herry   7000

32  1       male    004      John    6000

19  3      male      003      Justin    5000

30  2      female   002      Andy   4000

33  1     male       001      Michael    3000

 

 

 

 

 

为员工信息增加一列:等级(“level”)

  通过wihtColumns方法增加了新的一列等级信息,列名为“levle”,其中withColumns方法的"level”参数指定了新增列的列名,第二个参数指定了该列的实例,即通过“age”列转换得到新列,而people("age")方法则调用了DataFrame的apply方法,返回"age”列名对应的列。

age  depId   gender  job number  name  salary          level

33  1     male       001      Michael    3000    3.3

30  2      female   002      Andy   4000   3.0

19  3      male      003      Justin    5000  1.9

32  1       male    004      John    6000   3.2

20  2       female   005      Herry   7000  2.0

26  3      male       006        Jack    3000  2.6

 

 

 

 

 

修改工号列名

  注意,修改的列名必须存在,如果不存在,不会报错,但列名不会修改。

 Array[String]  =  Array( age,deptId,gender,job number,name,salary)

 Array[String]  =  Array( age,deptId,gender,job Id,name,salary)

 

 

 

 

 

增加新员工

  使用jsonFile方法加载了新员工信息的文件,然后调用people的unionAll方法,将新加载的newPeople合并起来。

 

 

 

 

 

查同名员工

   这里,我更改下数据,故意有存在同名员工的情况。

 

  首先通过unionAll方法将people和newPeople进行合并,然后使用groupBy方法将合并后的DataFrame按照"name"列进行分组,分组操作会得到一个GroupData类型提供了一组非常有用的统计操作,这里继续调用它的count方法,最终实现对员工名字的分组计数。

groupName:org.apache.spark.sql.DataFrame=[name:string,count:bigint]

name  count

Justin  1

Jack    1

John   2

Andy  1

Michael 1

Herry  1

Hadoop 1

Storm     1

 

 

 

  接着对groupName这个实例,进行过滤操作,使用filter方法,获取“name”列的计数大于1的内容,并以表格形式呈现。

name   count

John     2

 

 

 

  使用函数式编程范式,对前两个的合并,得到的结果是一样的

name   count

Johb    2

 

 

 

 

 

 

分组统计信息

  首先针对people的"deptId"列进行分组,分组后得到的GroupData实例继续调用agg方法,分别对"age"列求最大值,对"gender"进行计数。

 

 

 

  调用DataFrame的toDF方法,重新命名之前聚合得到的depAgg的全部列名,增加了列名的可读性。

 

 

 

 

 

 

名字去重

  首先显示新旧员工信息合并后的"name"列,作为后续去重的比较对象。

  通过unionAll新旧员工信息,并只选择其中的"name"列信息后,出现的"name"信息就出现列重复,通过继续调用DataFram的distinct方法后,可以去除重复的记录数据。

 

 

 

 

对比新旧员工表

  分别选取people和newPeople两个员工信息的“name”列,然后通过调用except方法,获取在people中出现、但同时不在newPeople中出现的"name"信息,最后以表格形式显示。

name

Michael

Andy

Justin

Herry

Jack

 

 

  求“name”的交集,即分别选取people和newPeople两个员工信息的“name”列,然后通过调用intersect方法,获取在people中出现、但同时又在newPeople中出现的“nmae”列,最后以表格形式显示。

name

John

 

 

 

join两个DataFrame实例

 

  people通过调用join方法,基于people的"deptId"列与newPeople的"deptId"列进行outer join联合操作,即外部链接,由于people与newPeople的两个DataFrame中用于联合的列名相同,都是“dept”列,因此,指定联合条件表达式时,需要指出列所属的具体DataFrame实例,否则报错。

 

 

 

 

 

 

 

保留为表

  在对各个DataFrame实例进行操作后,获取了目标信息,如果后续需要这些信息的话,就必须执行持久化操作,即将文件保存到存储系统或表中。

  下面给出几种持久化的案例

1)  首先将实例持久化到表中

  scala  > jionP.saveAsTable(peopleDeplJion")

  此时,使用的默认的Hive,没有连接到现有的Hive环境上。

  通过调用DataFrame的saveAsTable方法,将实例持久化到hive的“peopleDeplJion”表中。对应地,会在HDFS上构建hive用户的目录,即/user/hive,同时生成hive的仓库目录,即/user/hive/warehouse,每个构建的hive表,都会对应到该仓库下的一个子目录,持久化DataFrame实例后,对应创建列"peopleDeplJion"这个子目录。

  表相关的操作,其实还有registerTempTable方法。自行去试试

  

2) 保存为json文件

  scala > hsqlDF.save("/user/harli/hsqlDF.json","json")

  通过调用save方法,通过在方法中指定数据源为"json",可以将DataFrame实例持久化到指定路径上。

 

3) 保存为parquet文件

  scala > hsqlDF.save("/user/harli/hsqlDF.parquet","parquet")

  通过调用save方法,通过在方法中指定数据源为“parquet”,可以将DataFrame实例持久化到指定路径上。

 

 

 

 

 

 

附代码和数据

package cn.spark.study.sql

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.log4j.{Level,Logger}

object DataFrameExamples1 {
def main(args: Array[String]) {


val conf = new SparkConf()
.setAppName("DataFrameCreate")
.setMaster("local");
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.spark,sql").setLevel(Level.WARN)
Logger.getLogger("org.apache.hadoop.hive.ql").setLevel(Level.WARN)

/*
* 加载方式一
*/
// val df = sqlContext.read.json("./data/people.json")
// val df = sqlContext.read.json("./data/newPeople.json")
// val df = sqlContext.read.json("./data/department.json")
// df.show()

/*
* 加载方式二
*/
// val people = sqlContext.jsonFile("./data/people.json")
// val newPeople = sqlContext.jsonFile("./data/newPeople.json")
// val department = sqlContext.jsonFile("./data/department.json")
// people.show()

/*
* 加载方式三
*/
val people = sqlContext.load("./data/people.json","json")
val newPeople = sqlContext.load("./data/newPeople.json","json")
// val department = sqlContext.load("./data/department.json","json")
// people.show
// people.show()
// people.show(10)


/*
* DataFrame基本信息的查询
*/
// people.columns.foreach(println)
// people.count
// people.take(3).foreach(println)
// people.toJSON.collect.foreach(println)
// people.toJSON.collect().foreach(println)


/*
* 对员工信息进行条件查询,并输出结果
*/
// > people.filter("gender=\'male\'").count

// > people.filter($"gender" !=== "female").count
// > people.filter($"age" > 25).show
// > people.where($"age" > 25).show

// > people.where($"age" > 25 && $"gender" === "male").show
// > people.where($"age" > 25).show




/*
* 对员工信息进行,以指定的列名,以不同方式进行排序
*/
// > people.sort($"job number".asc,col("deptId").desc).show
// > people.sort($"job number").show(3)
// > people.sort("job number").show(3)
// > people.sort($"job number".asc).show






/*
* 为员工信息增加一列:等级(“level”)
*/
// > people.withColumn("level",people("age")/10).show



/*
* 修改工号列名
*/
// people.columns.foreach(println)
// println
// people.withColumnRenamed("job number","jobId").columns.foreach(println)


/*
* 增加新员工
*/
// val newPeople = sqlContext.read.json("./data/newPeople.json")
// val newPeople = sqlContext.jsonFile("./data/newPeople.json")
// val newPeople = sqlContext.load("./data/newPeople.json","json")
// newPeople.show
// people.unionAll(newPeople).show




/*
* 查同名员工
*/
// > val goupName = people.unionAll(newPeople).groupBy(col("name")).count
// > goupName.show
// > groupName.filter($"count" > 1).show
// > people.unionAll(newPeople).groupBy(col("name")).count.filter($"count" > 1).show



/*
* 分组统计信息
*/
// val depAgg = people.groupBy("deptId")
// .agg(Map( "age" -> "max","gender" -> "count"))
// depAgg.show
// depAgg.toDF("deptId","maxAge","counterGender").show


/*
* 名字去重
*/

// val unionPeople = people.unionAll(newPeople).select("name").show
// val unionPeople = people.unionAll(newPeople).select("name").distinct.show

/*
* 对比新旧员工表
*/
// > people.select("name").except(newPeople.select($"name")).show
// > people.select("name").intersect(newPeople.select($"name")).show


/*
* join两个DataFrame实例
*/
people.show
newPeople.show
people.join(newPeople,people("deptId") === newPeople("deptId"),"outer").show


// > val rnnewPeople = newPeople.withColumnRenamed("deptId","id")
// > val jionP = people.join(rnnewPeople,$"deptId" === $"id","outer")
// > jionP.show




}
}

 

//people.json
//{"name":"Michael","job number":"001","age":33,"gender":"male","deptId":1,"salary":3000}
//{"name":"Andy","job number":"002","age":30,"gender":"female","deptId":2,"salary":4000}
//{"name":"Justin","job number":"003","age":19,"gender":"male","deptId":3,"salary":5000}
//{"name":"John","job number":"004","age":32,"gender":"male","deptId":1,"salary":6000}
//{"name":"Herry","job number":"005","age":20,"gender":"female","deptId":2,"salary":7000}
//{"name":"Jack","job number":"006","age":26,"gender":"male","deptId":3,"salary":3000}


//newPeople.json
//{"name":"John","job number":"007","age":32,"gender":"male","deptId":1,"salary":4000}
//{"name":"Hadoop","job number":"008","age":20,"gender":"female","deptId":2,"salary":5000}
//{"name":"Storm","job number":"009","age":26,"gender":"male","deptId":3,"salary":6000}


//department.json
//{"name":"Development Dept","deptId":1}
//{"name":"Personnel Dept","deptId":2}
//{"name":"Testing Department","deptId":3}

以上是关于DataFrame入门案例(集团公司对人事信息处理场景)的主要内容,如果未能解决你的问题,请参考以下文章

企业人事考勤管理系统基于B/S模式的asp系统

Annotaion 注解 详解案例

基于Java EE技术的公司职员信息管理系统查询与统计功能的设计与实现

基于Java EE技术的公司职员信息管理系统查询与统计功能的设计与实现

:DataFrame入门

氚云人事文档介绍