粒子群群算法详解

Posted 三名狂客

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了粒子群群算法详解相关的知识,希望对你有一定的参考价值。

一.产生背景

   

粒子群算法(particleswarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法对于Hepper的模拟鸟群(鱼群)的模型进行修正,以使粒子能够飞向解空间,并在最好解处降落,从而得到了粒子群优化算法。

遗传算法类似,也是一种基于群体叠代的,但并没有遗传算法用的交叉以及变异,而是粒子在解空间追随最优的粒子进行搜索。

PSO的优势在于简单,容易实现,无需梯度信息,参数少,特别是其天然的实数编码特点特别适合于处理实优化问题。同时又有深刻的智能背景,既适合科学研究,又特别适合工程应用。

设想这样一个场景:一群鸟在随机的搜索食物。在这个区域里只有一块食物,所有的鸟都不知道食物在哪。但是它们知道自己当前的位置距离食物还有多远。

                         那么找到食物的最优策略是什么

最简单有效的就是搜寻目前离食物最近的鸟的周围区域