构建ResNet卷积神经网络
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了构建ResNet卷积神经网络相关的知识,希望对你有一定的参考价值。
参考技术A 2015年,微软亚洲研究院的何凯明团队发布了一种特殊的卷积神经网络——残差神经网络(ResNet)。在残差神经网络出现之前,最深的深度神经网络只有二三十层左右,这该神经网络却可以在实验中轻松达到上百层甚至上千层,另外不会占用过多训练时间,也正因如此,图像识别准确率有了显著增强。此模型更是在同年的ImageNet大赛中,获得图像分类、定位、检测三个项目的冠军。在国际大赛上取得如此优异的成绩,证明了残差神经网络是个实用性强且优异的模型。在本研究中的猫狗二分类的实验中,也是基于残差神经网络来构建分类模型的。在本文中我们将把kaggle猫狗数据集应用于ResNet-18和ResNet-50网络模型。使用Resnet来探究当前使用卷积神经网络的准确率。如图4-1为ResNet的经典网络结构图——ResNet-18。
ResNet-18都是由BasicBlock组成,从图4-2也可得知50层及以上的ResNet网络模型由BottleBlock组成。在我们就需要将我们预处理过的数据集放入现有的Resnet-18和ResNet-50模型中去训练,首先我们通过前面提到的图像预处理把训练图像裁剪成一个96x96的正方形尺寸,然后输入到我们的模型中,这里就介绍一下ResNet-18的网络模型的结构,因为ResNet50与第五章的ResNet-34模型结构相仿。
ResNet-18的模型结构为:首先第一层是一个7×7的卷积核,输入特征矩阵为[112,112,64],经过卷积核64,stride为2得到出入特征矩阵[56,56,64]。第二层一开始是由一个3×3的池化层组成的,接着是2个残差结构,一开始的输入的特征矩阵为[56,56,64],需要输出的特征矩阵shape为[28,28,128], 然而主分支与shortcut的输出特征矩阵shape必须相同,所以[56,56,64]这个特征矩阵的高和宽从56通过主分支的stride为2来缩减为原来的一半即为28,再通过128个卷积核来改变特征矩阵的深度。然而这里的shortcut加上了一个1x1的卷积核,stride也为2,通过这个stride,输入的特征矩阵的宽和高也缩减为原有的一半,同时通过128个卷积核将输入的特征矩阵的深度也变为了128。第三层,有2个残差结构,输入的特征矩阵shape是[28,28,128],输出特征矩阵shape是[14,14,256], 然而主分支与shortcut的输出特征矩阵shape必须相同,所以[14,14,256]这个特征矩阵的高和宽从14通过主分支的stride为2来缩减为原来的一半即为7,再通过128个卷积核来改变特征矩阵的深度。然而这里的shortcut加上了一个1×1的卷积核,stride也为2,通过这个stride,输入的特征矩阵的宽和高也缩减为原有的一半,同时通过256个卷积核将输入的特征矩阵的深度也变为了256。第四层,有2个残差结构,经过上述的相同的变化过程得到输出的特征矩阵为[7,7,512]。第五层,有2个残差结构, 经过上述的相同的变化过程得到输出的特征矩阵为[1,1,512]。接着是平均池化和全连接层。
深度学习100例 -卷积神经网络(ResNet-50)鸟类识别 | 第8天
以上是关于构建ResNet卷积神经网络的主要内容,如果未能解决你的问题,请参考以下文章