Coursera Machine Learning : Regression 评估性能

Posted One-Way

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Coursera Machine Learning : Regression 评估性能相关的知识,希望对你有一定的参考价值。

评估性能

  评估损失

  1、Training Error

  首先要通过数据来训练模型,选取数据中的一部分作为训练数据.

  

  损失函数可以使用绝对值误差或者平方误差等方法来计算,这里使用平方误差的方法,即: (y-f(x))2

  使用此方法计算误差,然后计算所有数据点,并求平均数。

  

  Training Error 越小,模型越好?答案是否定的,下面看看Training Error 和模型复杂度的关系。

  

  

  

  

  

 

  从上的的图可以看出,要想使training error越小,模型就会变得越复杂,然后出现了过拟合的现象

  很有可能训练数据中有个别异常数据点,如果过度拟合所有的数据点,就会导致模型过拟合,并不能很好的对房价进行预测;

  training error 小,并不能说明是个很好的预测。

  

  

  2、Generalization (true) error 真实误差

  首先说明的一点是这个值是不能计算出来的;

  计算真实误差,首先需要知道真实值,训练数据中的数据不一定就代表真实值,不过可以通过训练数据中的平均值来估算出来。

  比如,计算房子A的房价,找出所有与A类似的房子求出房价,计算平均值。来估算房价。

  

  下面来看看真实误差和模型复杂度的关系:

  图像中的真实值,参考图像中颜色变浅的中间位置

  

  

  

  

  

  

  通过上图可以看出,模型简单和模型过度复杂,都不能很好的对数据进行预测

  

  3、Test Error

  Test Error 和 True Error 接近,Test Error的测试数据来自测试数据集。

  

  

  对测试数据集进行计算误差,计算方法和Training Error类似。

  

  

  Training, true, & test error 和 模型复杂度的比较:

  test error 在 true error的周边波动,接近true error的值。

  

  从上图中可以看出,总结出过拟合的判断:

  模型中存在估计参数w\'

    1. training error(w) < training error(w\')

    2. true error(w) > true error (w\')

   说明w过拟合

 

  误差的3个来源

   Noise, Bias, Variance

  1、Noise 噪声

    固有的,不可约减的

  

 

  2、Bias 偏差

  偏差是预测值(估计值)的期望与真实值之间的差距,偏差越大,越偏离真实数据。

  

 

  

 

  

  模型越简单,偏差越大

  

  模型越复杂,偏差越小

 

  3、Variance 方差

  描述的是预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散

  

  

  模型简单,方差小

  

  模型复杂,方差大

  

   偏差和方差权衡,偏差和方差不能计算

  

  

  training error和测试数据量的关系,固定的模型复杂度,少量数据拟合更好,误差会更小;随着数据量的增大,误差也随之增大,会达到一个临界点与true error 相等。

  true error 和测试数据量的关系,固定的模型复杂度,少量的数据的true error会更大;随着数据量的增大,误差也随之减小,会到达一个临界点与training error 相等。

  

  

以上是关于Coursera Machine Learning : Regression 评估性能的主要内容,如果未能解决你的问题,请参考以下文章

Coursera - Machine Learning, Stanford: Week 5

Coursera《machine learning》--逻辑回归

Coursera - Machine Learning, Stanford: Week 11

Coursera - Machine Learning, Stanford: Week 10

coursera—吴恩达Machine Learning笔记(4-6周)

Coursera - Machine Learning, Stanford: Week 1