求动态规划0-1背包算法解释

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了求动态规划0-1背包算法解释相关的知识,希望对你有一定的参考价值。

算法如下:
void Knapsack(Type v,int w,int c,int n,Type * * m)
int jMax=min(w[n]-1,c);
for(int j=0;j<=jMax;j++) m[n][j]=0;
for(int j=w[n];j<=c;j++) m[n][j]=v[n];
for(int i=n-1;i>1;i--)
jMax=min(w[i]-1,c);
for(int j=0;j<=jMax;j++) m[i][j]=m[i+1][j];
for(int j=w[i];j<=c;j++) m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);

m[1][c]=m[2][c];
if(c>=w[1])m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]);


大侠们说说这算法的思想还有每句代码的意思。说说m[i][j],m[n][j]表示什么,jMax是什么。越详细越好。
回答得详细,容易理解,马上加分,网上抄的就免了。

参考技术A 01背包问题
题目
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=maxf[i-1][v],f[i-1][v-c[i]]+w[i]

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物 品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度
以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组 f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1] [v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态 f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N
for v=V..0
f[v]=maxf[v],f[v-c[i]]+w[i];
其中的f[v]=maxf[v],f[v-c[i]]一句恰就相当于我们的转移方程f[i][v]=maxf[i-1][v],f[i-1][v-c[i]],因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。

过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。

procedure ZeroOnePack(cost,weight)
for v=V..cost
f[v]=maxf[v],f[v-cost]+weight
注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。

有了这个过程以后,01背包问题的伪代码就可以这样写:

for i=1..N
ZeroOnePack(c[i],w[i]);
初始化的细节问题
我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么 任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

一个常数优化
前面的伪代码中有 for v=V..1,可以将这个循环的下限进行改进。

由于只需要最后f[v]的值,倒推前一个物品,其实只要知道f[v-w[n]]即可。以此类推,对以第j个背包,其实只需要知道到f[v-sumw[j..n]]即可,即代码中的

for i=1..N
for v=V..0
可以改成

for i=1..n
bound=maxV-sumw[i..n],c[i]
for v=V..bound
这对于V比较大时是有用的。

小结
01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。
参考技术B 霍文基~住址6沙~英文吸食白粉~食到E+没过钱~应为毒隐太大~戒到~结果去了6沙银行打劫~现在正被警察通七~如有发现~请马上报警:110~奖励人命币:1500W~ 参考技术C 下面是我自己写的代码,用动态规划的方法解0/1背包问题。用VC6编译运行正确。供参考。
//这是头文件 knapsack.hpp
#ifndef KNAPSACK_HPP
#define KNAPSACK_HPP

using namespace std;

const int MAX_COUNT_OF_WIDGETS = 16;
const int MAX_CAPACITY_OF_KNAPSACK = 15;
// int CAPACITY_OF_KNAPSACK = 0;
// int COUNT_OF_WIDGETS = 0;
/* This struct widget is defined. */
struct Widget

int m_iID;
int m_iVolume;
int m_iValue;
bool m_bSelected;
;

/* This struct knapsack is defined */
struct Knapsack

int m_iCapacity;
int m_iValue;
;

/*
* This struct will be used in DynamicPrograming().
* m_iMaxValue indicates the maximum value can be achieved when the count of
* widgets is i and the capacity of the knapsack is j;
* m_bSelected indicates to achieve the maximum value whether the i-th widget
* is selected under the same condition stated above.
*/
struct MemeorizeMark

int m_iMaxValue;
bool m_bSelected;
;

class SolveKnapsack

public:
bool Init();
bool DynamicProgramming();
void PrintMaxValue()const;
void PrintSelection()const;

private:
Knapsack m_Knapsack;
Widget m_Widget[MAX_COUNT_OF_WIDGETS];
int m_iCountOfWidgets;
MemeorizeMark m_MemeorizeMark[MAX_COUNT_OF_WIDGETS][MAX_CAPACITY_OF_KNAPSACK];
;

#endif

========================================================
========================================================
//这是cpp文件 knapsack.cpp
#include <iostream>
#include "knapsack.hpp"

using namespace std;

bool SolveKnapsack::Init()

/* initialize the knapsack */
cout << "Pls input the capacity of knapsack(0 < capacity <= " << MAX_CAPACITY_OF_KNAPSACK << "): " << endl;
cin >> m_Knapsack.m_iCapacity;
m_Knapsack.m_iCapacity += 1;

if ((0 >= m_Knapsack.m_iCapacity) || ((MAX_CAPACITY_OF_KNAPSACK + 1) < m_Knapsack.m_iCapacity))

cout << "Capacity is not correct" << endl;
return false;

else

m_Knapsack.m_iValue = 0;


/* initialize the widgets */
cout << "Pls input the count of widgets(0< count <= " << MAX_COUNT_OF_WIDGETS << "): " << endl;
cin >> m_iCountOfWidgets;
m_iCountOfWidgets += 1;

if ((0 >= m_iCountOfWidgets) || ((MAX_COUNT_OF_WIDGETS + 1) < m_iCountOfWidgets))

cout << "count of widgets is not correct" << endl;
return false;

else

for (int i = 1; i < m_iCountOfWidgets; i++)

m_Widget[i].m_iID = i;

cout << "Pls input widget[" << i << "]'s volume:" << endl;
cin >> m_Widget[i].m_iVolume;
if (m_Widget[i].m_iVolume <= 0)

cout << "widget's volume is not correct" << endl;
return false;


cout << "Pls input widget[" << i << "]'s value:" << endl;
cin >> m_Widget[i].m_iValue;
if (m_Widget[i].m_iValue <= 0)

cout << "widget's value is not correct" << endl;
return false;


m_Widget[i].m_bSelected = false;
// end of for
// end of if

/* initialize the MemeorizeMark */
for (int i = 0; m_iCountOfWidgets > i; i++)

for (int j = 0; m_Knapsack.m_iCapacity > j; j++)

m_MemeorizeMark[i][j].m_iMaxValue = 0;
m_MemeorizeMark[i][j].m_bSelected = false;



return true;


bool SolveKnapsack::DynamicProgramming()

/*
* variable i stands for the current count of widgets;
* variable j stands for the current capacity of knapsack.
*
* The following code segment is to compute the value of the optimal
* solution using dynamic programming.
*/
int i = 0;
int j = 0;
for (i = 1; m_iCountOfWidgets > i; i++)

for (j = 1; m_Knapsack.m_iCapacity > j; j++)

if (m_Widget[i].m_iVolume <= j)


if ((m_MemeorizeMark[i - 1][j - m_Widget[i].m_iVolume].m_iMaxValue + m_Widget[i].m_iValue)
>=
m_MemeorizeMark[i-1][j].m_iMaxValue)

m_MemeorizeMark[i][j].m_iMaxValue = m_MemeorizeMark[i - 1][j - m_Widget[i].m_iVolume].m_iMaxValue + m_Widget[i].m_iValue;
m_MemeorizeMark[i][j].m_bSelected = true;

else

m_MemeorizeMark[i][j].m_iMaxValue = m_MemeorizeMark[i-1][j].m_iMaxValue;
m_MemeorizeMark[i][j].m_bSelected = false;


else

m_MemeorizeMark[i][j].m_iMaxValue = m_MemeorizeMark[i-1][j].m_iMaxValue;
m_MemeorizeMark[i][j].m_bSelected = false;




/*
* The following code segment is to contruct the optimal solution
* from the computed information.
*/
i = m_iCountOfWidgets - 1;
j = m_Knapsack.m_iCapacity - 1;

m_Knapsack.m_iValue = m_MemeorizeMark[i][j].m_iMaxValue;
for ( ; 0 < i; i--)

if (true == m_MemeorizeMark[i][j].m_bSelected)

m_Widget[i].m_bSelected = true;
j = j - m_Widget[i].m_iVolume;



return true;


void SolveKnapsack::PrintMaxValue()const

cout << "Max value is: " << m_Knapsack.m_iValue << endl;


void SolveKnapsack::PrintSelection()const

for (int i = 1; i < m_iCountOfWidgets; i++)

if (true == m_Widget[i].m_bSelected)

cout << "Widget[" << i << "] is selected" << endl;




int main()

SolveKnapsack SK;
if (true == SK.Init())

if (true == SK.DynamicProgramming())

SK.PrintMaxValue();
SK.PrintSelection();



return 0;
本回答被提问者和网友采纳
参考技术D 1 第5个回答  2010-12-04 1

动态规划算法--01背包问题

基本思想:

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式

 

应用场景:

适用动态规划的问题必须满足最优化原理、无后效性和重叠性。
1、最优化原理(最优子结构性质) 最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。

2、无后效性  将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。

3、子问题的重叠性  动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。

 

 

下面是一个关于 0-1背包问题 的动态规划思想PPT截图:

问题描述:
  给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

对于一种物品,要么装入背包,要么不装。所以对于一种物品的装入状态可以取0和1.我们设物品i的装入状态为xi,xi∈ (0,1),此问题称为0-1背包问题。

  数据:物品个数n=5,物品重量w[n]={0,2,2,6,5,4},物品价值V[n]={0,6,3,5,4,6},
(第0位,置为0,不参与计算,只是便于与后面的下标进行统一,无特别用处,也可不这么处理。)总重量c=10。背包的最大容量为10,那么在设置数组m大小时,可以设行列值为6和11,那么,对于m(i,j)就表示可选物品为i…n,背包容量为j(总重量)时背包中所放物品的最大价值。

最优值分析过程如下:

  当背包为空时,首先分析将物品n放入背包,即在总重量分别为0到10时,如何放置物品n使总价值最大。

  对于m[5][j],当j<w[5]时,物品5不能放入背包中,此时背包的价值为0。当j>=w[5]时,物品5可以放入背包,此时背包的价值为v[5]。得到结果如下表:

  在物品5的基础上分析物品4,

  当j<w[4]时,物品4不能放入,此时背包的最大价值为m[4+1][j];即m[4][0..4]=m[5][0..4]

  当j>=w[4]时,物品4要么放入要么不放入。当物品4放入背包后,对于物品4+1到n,能达到的最大价值为m[4+1][j-w[4]]+v[4],故此时能达到的最大价值为m[4+1][j-w[4]]+v[4]

  当物品4不放入背包时,能达到的最大价值为m[4+1][j]。最后比较放入与不放入情况下,两者的最大值取其大者,分析结果如下:

  由前面分析过程得m[i][j]的递归过程如下:

                                                       

  最终得到如下结果:

                                

  

构造最优解

  最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。从i=1,j=c即m[1][c]开始。  

  1、对于m[i][j],如果m[i][j]==m[i+1][j],则物品i没有装入背包,否则物品i装入背包;

    2、为了确定后继即物品i+1,应该寻找新的j值作为参照。如果物品i已放入背包,则j=j-w[i];如果物品i未放入背包,则j=j。

  3、重复上述两步判断后续物品i到物品n-1是否放入背包。

  4、对于物品n,直接通过m[n][j]是否为0来判断物品n是否放入背包。

  参考:五种常用算法之三:动态规划   

   

 

#include<iostream>
#include<stack>
#include<vector>

using namespace std;

stack<int> KnapSack(int c,vector<int> w,vector<int> v,int &max_m)
{
    vector<vector <int> > m(w.size(),vector<int>(c+1));
    stack<int> res;
    int i,j;
    
    max_m=0;
    for(j=0;j<c+1;j++) //对于m[n][j],
        if(j<w[w.size()-1])
            m[w.size()-1][j]=0;  //当j<w[n]时,物品n不能放入背包中,此时背包的价值为0。
        else 
            m[w.size()-1][j]=v[v.size()-1];  //当j>=w[n]时,物品n可以放入背包,此时背包的价值为v[n]
    
    for(i=w.size()-2;i>=0;i--) //对于m[i][j],
    {
        for(j=0;j<c+1;j++) 
            if(j<w[i])          //当j<w[i]时,物品i不能放入背包中,此时背包的价值为m[i+1][j]。 
                m[i][j]=m[i+1][j];
            else                //当j>=w[i]时,物品n可以放入背包
            {
                int m1=m[i+1][j];  //当物品i不放入背包时,能达到的最大价值为m[i+1][j]
                int m2=m[i+1][j-w[i]]+v[i];  //当物品i放入背包后,对于物品i+1到n,能达到的最大价值为m[i+1][j-w[i]]+v[i]
                m[i][j]=m1>m2?m1:m2;         //两者取其大者        
            }    
    } 
/*    cout << "最优值矩阵:"<<endl;
    for(i=0;i<w.size();i++)
    {
        for(j=0;j<c+1;j++)
            cout<<m[i][j]<<" ";
        cout <<endl;
    }    
    cout <<endl;
    */
    j=c;
    for(i=0;i<w.size()-1;i++)
    {
        if(m[i][j]!=m[i+1][j])
        {
            res.push(i+1);
            max_m+=v[i];
            j=j-w[i];        
        }
    }    
    if(m[w.size()-1][j]!=0)
    {
        res.push(w.size());
        max_m+=v[w.size()-1];
    }    
        
    return res;    
}

int main()
{
    vector<int> weight;
    vector<int> value;
    stack<int>  result;
    int max_weight; 
    int tmp; 
    int result_m=0;
    
    cout<< "输入背包最大容量"<<endl;
    cin >> max_weight; 
    cout <<"输入物品重量,以0结束"<<endl;
    
    while(1)
    {
        cin>>tmp;
        if(tmp!=0)
            weight.push_back(tmp);
        else 
            break;
    }    
    cout <<"物品重量: "<<endl;
    for(int i=0;i<weight.size();i++)
        cout <<weight[i]<<" ";
    cout << endl;
    cout <<"输入物品权重,以0结束"<<endl;
    while(1)
    {
        cin>>tmp;
        if(tmp!=0)
            value.push_back(tmp);
        else
            break;
    }
        
    cout <<"物品权重: "<<endl;
    for(int i=0;i<value.size();i++)
        cout <<value[i]<<" ";
    cout << endl;
    
    result=KnapSack(max_weight,weight,value,result_m);
    
    cout <<"放入背包的物品为:"<<endl; 
    while(!result.empty())
    {
        cout <<result.top()<<" ";
        result.pop();
    }
    cout <<endl;
    cout<<"背包最大价值为:"<<result_m<<endl;
    
    return 0;
}

 

 

 

 

以上是关于求动态规划0-1背包算法解释的主要内容,如果未能解决你的问题,请参考以下文章

[算法]动态规划 0-1背包 完全背包

动态规划算法之0-1背包问题

动态规划算法之0-1背包问题

基础算法——动态规划0/1背包问题

图解算法-怎么用动态规划解决0-1背包问题

背包问题(动态规划)